Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (5): 926-935.doi: 10.3864/j.issn.0578-1752.2012.05.013

• HORTICULTURE • Previous Articles     Next Articles

cDNA-AFLP Analysis of White Rust Response Genes in Chrysanthemum morifolium ‘Zihe’

 HUANG  He, WANG  Shun-Li, DAI  Si-Lan   

  1. 1.北京林业大学园林学院,北京 100083
    2.北京农学院城乡发展学院,北京 102206
  • Received:2011-08-23 Online:2012-03-01 Published:2011-12-01

Abstract: 【Objective】An experiment was conducted to study the molecular mechanism of Chrysanthemum morifolium ‘Zihe’ response to the white rust, and to screen the white rust resistance genes. 【Method】 Infections were conducted by spraying the C. morifolium ‘Zihe’ leaves with suspension of 106 white rust sporangia per mL pure water for 3, 6, 12, 24, 48, 72, 96 h. cDNA-AFLP was used to moniter the gene expression under the white rust infections, and RT-PCR was used to validate the gene expression patterns. RACE method was used to get two fully cDNA sequences encoding 14-3-3 proteins, and phylogenetic analysis was also performed. 【Result】 Seventy-six primer combinations were used to investigate 4 950 cDNA fragments. After sequencing of 80 ESTs, the nucleic acid sequences of 51 ESTs were obtained, and among them, 18 ESTs were obtained, and showed homologous to the resistance-related genes of other species. These 18 ESTs were sorted into six functional categories: disease resistance protein, signal transduction, photosynthesis and photorespiration, retroelement polyprotein-like, senescence and metabolism pathways. RT-PCR showed that the cDNA-AFLP results was accurate and believable. Furthermore, two fully cDNA sequences of genes encoding 14-3-3 proteins were obtained: CmGFR01, CmGFR02. These two genes were 1 062 and 1 098 bp, encoded ORFs of 260 and 271 amino-acid residues. Phylogenetic analysis showed that the CmGFR01 and CmGFR02 might belong to a new subfamily of the higher plants 14-3-3 genes family. 【Conclusion】Gene expression profiling in response to white rust and differentially expressed genes of C. morifolium ‘Zihe’ were identified via cDNA-AFLP analysis. These genes could help us to understand the mechanism of response of plants to white rust. Furthermore, the isolated two genes, CmGFR01 and CmGFR02, could be used for the gene enigeering of the cultivated chrysanthemum resistance to the biotic stresses.

Key words: Chrysanthemum morifolium, white rust, cDNA-AFLP, 14-3-3 gene

[1]张莉俊, 戴思兰. 菊花种质资源研究进展. 植物学报, 2009, 44(5): 526-535.

Zhang L J, Dai S L. Research advance on germplasm resources of Chrysanthemum × morifolium. Chinese Bulletin of Botany, 2009, 44(5): 526-535. (in Chinese)

[2]王顺利, 王红利, 雷增普, 戴思兰. 菊花白锈病研究进展. 北方园艺, 2008, 1: 67-70.

Wang S L, Wang H L, Lei Z P, Dai S L. Review of chrysanthemum white rust. Northern Horticulture, 2008, 1: 67-70. (in Chinese)

[3]王顺利, 刘红霞, 戴思兰. 菊花白锈病田间药剂防治试验. 西北农业学报, 2008, 17(1): 116-119.

Wang S L, Liu H X, Dai S L. Field experiment of fungicides for control of chrysanthemum white rust. Acta Agriculturae Boreali- Occidentalis Sinica, 2008, 17(1): 116-119. (in Chinese)

[4]Chisholm S T, Coaker G, Day B, Staskawicz B J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124: 803-814.

[5]Nürnberger T, Scheel D. Signal transmission in the plant immune response. Trends in Plant Science, 2001, 6: 372-379.

[6]Flor H H. Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971, 9: 275-296.

[7]Dangl J. Plants just say NO to pathogens. Nature, 1998, 394: 525-527.

[8]Doornbos R F, Geraats B P J, Kuramae E E, Van Loon L C, Bakker P A H M. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the Rhizosphere bacterial community of Arabidopsis thaliana. Molecular Plant Microbe Interactions, 2011, 24: 395-407.

[9]王友红, 张鹏飞, 陈建群. 植物抗病基因及其作用机理. 植物学通报, 2005, 22(1): 92-99

Wang Y H, Zhang P F, Chen J Q. Disease resistance genes and mechanisms in plants. Chinese Bulletin of Botany, 2005, 22(1): 92-99. (in Chinese)

[10]Lassois L, Frettinger P, de Lapeyre L L, Lepoivre P, Jijakli H. Identification of genes involved in the response of banana to crown rot disease. Molecular Plant-Microbe Interactions, 2011, 24: 143-153.

[11]Zamharir M G, Mardi M, Alavi S M, Hasanzadeh N, Nekousi M K, Zamanizadeh H R, Alizadeh A, Salekdeh G H. Identification of genes differentially expressed during interaction of Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”. BMC Microbiology, 2011, 11: 1.

[12]El-Bebany A F, Henriquez M A, Badawi M, Adam L R, Hadrami E A, Daayf F. Induction of putative pathogenicity-related genes in Verticillium dahliae in response to elicitation with potato root extracts. Environmental and Experimental Botany, 2011, 72: 251-257.

[13]Wu J, Zhang Y, Zhang H, Huang H, Folta K M, Lu J. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biology, 2010, 10: 234.

[14]Soria-Guerra R E, Rosales-Mendoza S, Chang S. Transcriptome analysis of resistant and susceptible genotypes of Glycine tomentella during Phakopsora pachyrhizi infection reveals novel rust resistance genes. TAG Theoretical and Applied Genetics, 2010, 120: 1315-1333.

[15]Aoun M, Jacobi V, Boyle B, Bernier L. Identification and monitoring of Ulmus americana transcripts during in vitro interactions with the Dutch elm disease pathogen Ophiostoma novo-ulmi. Physiological and Molecular Plant Pathology, 2010, 74: 254-266.

[16]Jong J, Rademaker W. The reaction of Chrysanthemum cultivars to Puccinia horiana and the inheritance of resistance. Euphytica, 1985, 35(3): 945-952.

[17]王顺利, 刘红霞, 戴思兰. 菊花白锈病菌冬孢子萌发的生物学特性. 林业科学研究, 2006, 19(3): 391-394.

Wang S L, Liu H X, Dai S L. A study on the germination of the teliospores of Puccinia horiana. Forest Research, 2006, 19(3): 391-394. (in Chinese)

[18]王顺利. 菊花白锈病综合防治及菊花抗病相关基因研究[D]. 北京: 北京林业大学博士论文, 2008.

Wang S L. Chrysanthemun white rust integrated control and resistance genes cloning from Chrysanthemum morifolium Ramat[D]. Beijing: Beijing Forestry University, 2008. (in Chinese).

[19]王顺利, 戴思兰. 菊花抗白锈病品种资源鉴定与评价指标的建立//张启翔. 中国观赏园艺研究进展(2010). 北京: 中国林业出版社, 2010: 491-494.

Wang S L, Dai S L. Resistance of Chrysanthemum cultivars to white rust and evaluation index//Zhang Q X. Advances in Ornamental Horticulture of China (2010). Beijing: China Forestry Publishing House, 2010: 491-494. (in Chinese)

[20]黄 河, 王琳琳, 王顺利, 曹华雯, 戴思兰. 适于cDNA-AFLP的甘菊RNA快速高效提取方法//张启翔. 中国观赏园艺研究进展(2009). 北京: 中国林业出版社, 2009: 180-188.

Huang H, Wang L L, Wang S L, Cao H W, Dai S L. A quick and high efficient method for RNA isolation from Chrysanthemum lavandulifolium applied for cDNA-AFLP//Zhang Q X. Advances in Ornamental Horticulture of China (2009). Beijing: China Forestry Publishing House, 2009: 180-188. (in Chinese)

[21]黄 河, 王顺利, 曹华雯, 戴思兰. 甘菊cDNA-AFLP反应体系的优化. 生物技术通报, 2009, 11: 108-113.

Huang H, Wang S L, Cao H W, Dai S L. Optimization of cDNA-AFLP technical system for Chrysanthemum lavandulifolium. Biotechnology Bulletin, 2009, 11: 108-113.

[22]刘振林, 曹华雯, 夏新莉, 尹伟伦, 戴思兰. 甘菊BADH基因cDNA的克隆及在盐胁迫下的表达. 武汉植物学研究, 2009, 27(1): 1-7

Liu Z L, Cao H W, Xia X L, Yin W L, Dai S L. Cloning and expression analysis of betaine aldehyde dehydrogenase gene from Dendranthema lavandulifolium on salinity. Journal of Wuhan Botanical Research, 2009, 27(1): 1-7. (in Chinese)

[23]Chen F, Li Q, Sun L, He Z. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Research, 2006, 13(2): 53-63.

[24]Shi C, Chaudhary S, Yu K, Navabi A, McClean P E. Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L. ) using cDNA-AFLP. Molecular Biology Reports, 2011, 38(1): 75-81.

[25]Feng N, Li Y, Tang J, Wang Y, Guo M. cDNA-AFLP analysis on transcripts associated with hydroxysafflor yellow A (HSYA) biosynthetic pathway in Carthamus tinctorius. Biochemical Systematics and Ecology, 2010, 38(5): 971-980.

[26]Sarosh B R, Danielsson J, Meijer J. Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea. Plant Molecular Biology, 2009, 70: 31-45.

[27]Yamaguchi Y, Pearce G, Ryan C A. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proceedings of the National Academy of Sciences, 2006, 103(26): 10104-10109.

[28]Huffaker A, Pearce G, Ryan C A. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences of the USA, 2006, 103(26): 10098-10103.

[29]Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280(5366): 1091-1094.

[30]Zheng N, Schulman B A, Song L, Miller J J, Jeffrey P D, Wang P, Chu C, Koepp D M, Elledge S J, Paganok M, Conaway R C, Conaway J W, Harper J W, Pavletich N P. Structure of the Cul1-Rbx1-Skp1- FboxSkp2 SCF ubiquitin ligase complex. Nature, 2002, 416: 703-709.

[31]Hagen G, Guilfoyle T J, Gray W M. Auxin signal transduction. Plant Hormones, 2010, D: 282-307.

[32]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007, 58(2): 221-227.

[33]Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. The Plant Cell Online, 2000, 12(4): 599-610.

[34]Moreno J I, Martín R, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. The Plant Journal, 2005, 41(3): 451-463.

[35]Damme M V, Andel A, Huibers R P, Panstruga R, Weisbeek P J, Ackerveken G V. Identification of Arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. Molecular Plant Microbe Interactions, 2005, 18(6): 583-592.

[36]van Damme M, Zeilmaker T, Elberse J, Andela A, Veldenb M S, Ackerveken G V. Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. The Plant Cell Online, 2009, 21(7): 2179-2189.

[37]Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K, Jones J D G. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84(3): 451-459.

[38]De Jong C F, Honée G, Joosten M H A G, De Wit P J G M. Early defence responses induced by AVR9 and mutant analogues in tobacco cell suspensions expressing the Cf-9 resistance gene. Physiological and Molecular Plant Pathology, 2000, 56(4): 169-177.

[39]Blatt M R, Grabov A, Brearley J, Hammond-Kosack K, Jones J D G. K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. The Plant Journal, 1999, 19(4): 453-462.

[40]Luderer R, Rivas S, Nürnberger T, Mattei B, Van den Hooven H W, Van der Hoorn R A L, Romeis T, Wehrfritz J M, Blume B, Nennstiel D, Zuidema D, Vervoort J, Lorenzo G D, Jones J D G, De Wit P J G M, Joosten M H A J. No evidence for binding between resistance gene product Cf-9 of tomato and avirulence gene product AVR9 of Cladosporium fulvum. Molecular Plant Microbe Interactions, 2001, 14(7): 867-876.

[41]Romeis T, Piedras P, Jones J D G. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. The Plant Cell Online, 2000, 12(5): 803-816.

[42]Schenk P M, Kazan K, Rusu A G, Manners J M, Maclean D J. The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiology and Biochemistry, 2005, 43: 997-1005.

[43]Hubert D A, Tornero P, Belkhadir Y, Krishna P, Akira Takahashi A, Shirasu K, Dangl J L. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. The EMBO Journal, 2003, 22(21): 5679-5689.

[44]van Hemert M J, Steensma H Y, van Heusden G P H. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays, 2001, 23(10): 936-946.

[45]Booij P P, Roberts M R, Vogelzang S A, Kraayenhof R, Boer A H. 14-3-3 proteins double the number of outward-rectifying K+ channels available for activation in tomato cells. The Plant Journal, 1999, 20(6): 673-683.

[46]Finnie C, Andersen C H, Borch J, Gjetting S, Christensen A B, de Boer A H, Thordal-Christensen H, Collinge D B. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus? Plant Molecular Biology, 2002, 49(2): 137-147.

[47]Yan J Q, Wang J, Zhang H. An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. The Plant Journal, 2002, 29(2): 193-202.

[48]Wang W M, Yang X H, Tangchaiburana S, Ndeh R, Markham J E, Tsegaye Y, Dunn T M, Wang G L, Bellizzi M, Parsons J F, Morrissey D, Bravo J E, Lynch D V, Xiao S Y. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. The Plant Cell Online, 2008, 20(11): 3163-3179.

[49]Brandt J, Thordal-Christensen H, Vad K, Gregersen P L, Collinge D B. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. The Plant Journal, 1992, 2(5): 815-820.

[50]Seehaus K, Tenhaken R. Cloning of genes by mRNA differential display induced during the hypersensitive reaction of soybean after inoculation with Pseudomonas syringae pv. glycinea. Plant Molecular Biology, 1998, 38(6): 1225-1234.

[51]Lapointe G, Luckevich M D, Cloutier M, Séguin A. 14-3-3 gene family in hybrid poplar and its involvement in tree defence against pathogens. Journal of Experimental Botany, 2001, 52(139): 1331-1338.

[52]Roberts M R, Bowles D J. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiology, 1999, 119(4): 1243-1250.

[53]Hill M K, Lyon K J, Lyon B R. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Molecular Biology, 1999, 40(2): 289-296.

[54]Wu K, Rooney M F, Ferl R J. The Arabidopsis 14-3-3 multigene family. Plant Physiology, 1997, 114(4): 1421-1431.
[1] BI MengMeng,LIU Di,GAO Ge,ZHU PengFang,MAO HongYu. CmWRKY15-1 Regulates Resistance of Chrysanthemum White Rust Through Salicylic Acid Signaling Pathway [J]. Scientia Agricultura Sinica, 2021, 54(3): 619-628.
[2] WEN LiZhu, SUN Xia, FAN HongMei, GUO YunHui, YU YuanYuan, REN Hong, WANG WenLi, ZHENG ChengShu. Cloning and Functional Verification of AINTEGUMENTA Gene in Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(9): 1771-1782.
[3] GUO YunHui, YU YuanYuan, WEN LiZhu, SUN CuiHui, SUN XianZhi, WANG WenLi, SUN Xia, ZHENG ChengShu. Molecular Basis of the Effects of Nitrate Signal on Root Morphological Structure Changes of Chrysanthemum [J]. Scientia Agricultura Sinica, 2017, 50(9): 1684-1693.
[4] HAN Shuang, CHEN Su-mei, JIANG Jia-fu, FANG Wei-min, GUAN Zhi-yong, CHEN Fa-di. Hormone Levels and Gene Expression Analysis of Chrysanthemum Cultivar ‘Puma Sunny’ Under Low Light Intensity [J]. Scientia Agricultura Sinica, 2015, 48(2): 324-333.
[5] LUAN Zhao-Jie, CAO Yuan-Yin, LI Tian-Ya, CHEN Si, CHEN Xiu-Mei, ZHU Gui-Qing, LI Wei-Hua. cDNA-AFLP Analysis of Differentially Expressed Resistant Genes of Minn2761 [J]. Scientia Agricultura Sinica, 2013, 46(23): 5058-5065.
[6] WANG Liang, WANG Chu-Chu, JIANG Jia-Fu, CHEN Su-Mei, FANG Wei-Min, TENG Nian-Jun, GUAN Zhi-Yong, LIAO Yuan, CHEN Fa-Di. Interspecific Hybridization Between Chrysanthemum morifolium ‘Nannongyinshan’ and C. zawadskii and Identification of Waterlogging Tolerance of Their Hybrid [J]. Scientia Agricultura Sinica, 2013, 46(20): 4328-4335.
[7] CAO Shi-Xian, CHENG Xi, JIANG Zheng-Zhong, SHENG Liang, SHANG Guan-Ming-Zhu, DENG Wei-Wei, WEI Chao-Ling. Differential Genes Expression in Tea Plant (Cameilla sinensis L.) Induced by Ectropis oblique Feeding Based on cDNA-AFLP [J]. Scientia Agricultura Sinica, 2013, 46(19): 4119-4130.
[8] YANG Rui-Xian, FAN Xiao-Jing, QIU Si-Xin, CAI Xue-Qing, HU Fang-Ping. cDNA-AFLP Analysis of Differential Gene Expression in Pepper Inoculated with Endophytic Bacillus amyloliquefaciens Fy11 [J]. Scientia Agricultura Sinica, 2013, 46(12): 2449-2458.
[9] WU Xu, YAN Mei-Jiao, LIU Li-Ping, FU Xing-Yuan, LIAN Sen-Yang, LI Ang. cDNA-AFLP Analysis on Transcripts Associated Gene with Broodiness in Muscovy Duck [J]. Scientia Agricultura Sinica, 2012, 45(2): 353-358.
[10] SUN Xia, WANG Xiu-Feng, ZHENG Cheng-Shu, XING Shi-Yan, SHU Huai-Rui. The cDNA Cloning and Analysis of Sequence Information and Quantitative Express of Chrysanthemum Rhythms Clock Output Gene CmGI (GIGANTEA) [J]. Scientia Agricultura Sinica, 2012, 45(13): 2690-2703.
[11] FENG Feng,YANG Ji-shuang. Relationship Between Floral Bud Differentiation and Endogenous Hormones in Autumn-Cutting Chrysanthemum morifolium ‘Jinba’
[J]. Scientia Agricultura Sinica, 2011, 44(3): 552-561 .
[12] REN Hong-Yan, SUN Xia, ZHENG Cheng-Shu, WANG Wen-Li, SUN Xian-Zhi, SHU Huai-Rui. Differential Analysis of Flowering Related Genes by cDNA-AFLP in Chrysanthemum [J]. Scientia Agricultura Sinica, 2011, 44(16): 3386-3394.
[13] HUI Mai-xia,WANG Han,ZHANG Lu-gang,HE Yu-ke
. cDNA-AFLP Analysis and Conversion of SCAR Markers of Near-Isogenic Lines with Lobed Leaves from No-Heading Chinese Cabbage (Brassica rapa ssp. cheninsis) #br# [J]. Scientia Agricultura Sinica, 2010, 43(21): 4447-4454 .
[14] WANG Wen-xia,CHU Dong,GAO Shi-gang,YAN Hong-fei,GOU Li-qian,YANG Wen-xiang,LIU Da-qun
.

cDNA-AFLP Analysis of Near-isogenic Line TcLr38 Resistance to Wheat Leaf Rust

[J]. Scientia Agricultura Sinica, 2010, 43(2): 293-303 .
[15] ZHANG Fei,CHEN Fa-di,FANG Wei-min,CHEN Su-mei,LI Feng-tong
.

Heterosis and Mixed Genetic Analysis of Inflorescence Traits of Chrysanthemum

[J]. Scientia Agricultura Sinica, 2010, 43(14): 2953-2961 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!