Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1545-1557.doi: 10.3864/j.issn.0578-1752.2012.08.010

• HORTICULTURE • Previous Articles     Next Articles

Progress in Research on the Metabolic Regulation and Molecular Mechanism of Green Leave Volatiles (GLVs)  

 CHEN  Shu-Xia, CHEN  Qiao, WANG  Cong-Ying, HAO  Li-Ning, FANG  Yu-Lin   

  1. 1.西北农林科技大学园艺学院/农业部西北地区园艺作物生物学与种质创制重点实验室,陕西杨凌 712100
    2.西北农林科技大学葡萄酒学院,陕西杨凌 712100
  • Received:2011-10-18 Online:2012-04-15 Published:2012-02-28

Abstract: Plants are always attacked by herbivores, pathogens and sometime suffer mechanical wounding in complicated environments, and then the lesions are caused and the complex defensive responses are induced. One of the defensive responses is releasing the green leaf volatiles (GLVs). The green leaf volatiles (GLVs) of plants are the C6 aldehydes, alcohols and their esters which are usually formed from polyunsaturated fatty acid catalyzed by lipoxygenase (LOX) and hydroperoxide lyase (HPL) in the oxylinpins pathway. The green leaf volatiles are important signaling moleculars, which introduce defensive responses between plants and pathogens, plants and herbivores, within plants and between neighbor plants. It is very important to study the metabolic pathway and the regulatory mechanisms of GLVs for probing into the direct or indirect defenses to pathogens and insects, improving the flavor of crop and increasing the new resistant germplasm. It is also very important to guide the strategy of integrated controlling of crop diseases and pest insects in agro-forestry ecosystems.

Key words: green leaf volatiles, lipoxygenase, hydroperoxide lyase, biochemical pathway, defense mechanism

[1]Matsui K. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 2006, 9(3): 274-280.

[2]Degenhardt D C, Lincoln D E. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. Journal of Chemical Ecology, 2006, 32(4): 725-743.

[3]Farag M A, Par P W. C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry, 2002, 61(5): 545-554.

[4]Hatanaka A. The biogeneration of green odor by green leaves. Phytochemistry, 1993, 34(5): 1201-1218.

[5]Gigot C, Ongena M, Fauconnier M L, Wathelet J P, Jardin P D, Thonart P. The lipoxygenase metabolic pathway in plants: potential for industrial production of natural green leaf volatiles. Biotechnology, Agronomy, Society and Environment, 2010, 14(3): 451-460.

[6]Kubo I, Fujita K. Antifungal mechanism of polygodial. Journal of Agricultural and Food Chemistry, 2001, 49(3): 5750-5754.

[7]Nakamura S, Hatanaka A. Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both Gram-negative and Gram-positive bacteria. Journal of Agricultural and Food Chemistry, 2002, 50(26): 7639-7644.

[8]Fukushige H, Hildebrand D F. Watermelon (Citrullus lanatus) hydroperoxide lyase greatly increases C6 aldehyde formation in transgenic leaves. Journal of Agricultural and Food Chemistry, 2005, 53(6): 2046-2051.

[9]Howe G A, Schilmiller A L. Oxylipin metabolism in response to stress. Current Opinion in Plant Biology, 2002, 5(3): 230-236.

[10]Shah J. Plants under attack systemic signals in defence. Current Openinion in Plant Biology, 2009, 12: 459-464.

[11]D’Auria J C, Chen F, Pichersky E. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiology, 2002, 130(1): 466-476.

[12]Salas J J, Garcia-Gonzalez D L, Aparicio R. Volatile compound biosynthesis by green leaves from an Arabidopsis thaliana hydroperoxide lyase knockout mutant. Journal of Agricultural and Food Chemistry, 2006, 54(21): 8199-8205.

[13]Paschold A, Halitschke R, Baldwin I T. Using ‘mute’ plants to translate volatile signals. Plant Journal, 2006, 45(2): 275-291.

[14]Gosset V, Harme N, Göbel C, Francis F, Haubruge E, Wathelet J P, Jardin P D, Feussner I, Fauconnier M L. Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. Journal of Experimental Botany, 2009, 60: (4) 1231-1240. 

[15]Feussner I, Wasternack C. The lipoxygenase pathway. Annual Review of Plant Biology, 2002, 53: 275-297.

[16]李彩凤,赵丽影,陈业婷,越  鹏,谷  维,王园园,滕祥勇,王楠博. 高等植物脂氧合酶研究进展. 东北农业大学学报, 2010, 41(10): 143-149.

Li C F, Zhao L Y, Chen Y T, Yue P, Gu W, Wang Y Y, Teng X Y, Wang N B. Research advances on higher plant lipoxygenase. Journal of Northeast Agricultural University, 2010, 41(10): 143-149.(in Chinese) 

[17]Allmann S, Halitschke R, Schuurink R C, Baldwin I T. Oxylipin channelling in Nicotiana attenuata: lipoxygenas 2 supplies substrates for green leaf volatile production. Plant, Cell and Environment, 2010, 33(12): 2028-2040.

[18]Andreou A., Brodhun F, Feussner I. Biosynthesis of oxylipinsin non-mammals. Progress in Lipid Research, 2009, 48(3): 148-170.

[19]Zhang B, Chen K, Bowen J, Allan A, Espley R, Karunairetnam S. Differential expression within the LOX gene family in ripening kiwifruit. Journal of Experimental Botany, 2006, 57(14): 3825-3836.

[20]Leone A, Bleve-Zacheo T, Gerardi C, Melillo M T, Leo L, Zacheo G. Lipoxygenase involvement in ripening strawberry. Journal of Agricultural and Food Chemistry, 2006, 54 (18): 6835-6844.

[21]Blokhina O, Virolainen E, Frgerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 2003, 91(2):179-194.

[22]Blée E. Phytooxylipins and plant defense reactions. Progress in Lipid Research, 1998, 37(1): 33-72.

[23]Liavonchanka A, Feussner N. Lipoxygenases:occurrence, functions and catalysis. Journal of Plant Physiology, 2006, 163(3): 348-357.

[24]Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2007,100(4): 681-697.

[25]Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009, 323(5911): 262-265.

[26]Browse J. The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry, 2009, 70: (13/14): 1539-1546.

[27]Koo A J K, Howe G A. The wound hormone jasmonate. Phytochemistry, 2009, 70(13/14):1571-1580. 

[28]Arimura G, Matsui K, Takabayashi J. Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant and Cell Physiology, 2009, 50(5): 911-923. 

[29]Thavong P, Archbold D D, Pankasemsuk T, Koslanund R. Postharvest use of hexanal vapor and heat treatment on longan fruit decay and consumer acceptance. The Thammasat International Journal of Science and Technology, 2010, 15(4): 54-64.

[30]Gullner G, Kunstler A, Király L, Pogány M, Tóbiás I. Up-regulated expression of lipoxygenase and divinyl ether synthase genes in pepper leaves inoculated with Tobamoviruses. Physiological and Molecular Plant Pathology, 2010, 74(5/6): 387-393.

[31]Podolyan A, White J, Jordan B, Winefield C. Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Functional Plant Biology, 2010, 37(8): 767-784.

[32]Grechkin A. Recent developments in biochemistry of the plant lipoxygenase pathway. Progress in Lipid Research, 1998, 37(5): 317-352.

[33]Pinto D M, Nerg A M, Holopainen J K. The role of ozone-reactive compounds, terpenes, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. Journal of Chemical Ecology, 2007, 33(12): 2218-2228.

[34]Bruce T J A, Wadhams L J, Woodcock C M. Insect host location: a volatile situation. Trends in Plant Science, 2005, 10(6): 269-274.

[35]Reddy G V P, Guerrero A. Interactions of insect pheromones and plant semiochemicals. Trends in Plant Science, 2004, 9(5): 253-261.

[36]Matsui K, Ujita C, Fujimoto S, Wilkinson J, Hiatt B, Knauf V, Kajiwara T, Feussner I. Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Letters, 2000, 481: 183-188.

[37]Uematsu S, Fujimoto K. The innate immune system in the intestine. Microbiology and Immunology, 2010, 54(11): 645-657.

[38]Thanh H T, Vergoignan C, Cachon R, Kermasha S, Gervais P, NguyenT X S, Belin J M, Husson F. Recombinant hydroperoxide lyase for the production of aroma compounds: Effect of substrate on the yeast Yarrowia lipolytica. Journal of Molecular Catalysis B-Enzymatic, 2008, 53: 146-152.

[39]Tijet N, Schneider C, Muller B L. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13- Hydroperoxides of linoleic and linolenic acids. Archives of Biochemistry and Biophysics, 2001, 386(2): 281-289.

[40]Pech J C, Bouzayen M, Latche A. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Science, 2008, 175: 114-120.

[41]Matsui K, Kajiwara T. Inactivation of tea leaf hydroperoxide lyase by fatty hydroperoxide. Journal of Agricultural Food Chemistry, 1992, 40: 175-178.

[42]Noordermeer M A,Dijken A J, Smeekens S C M, Veldink G A, Vliegenthart J F G. Charaeterization of three cloned and expressed 13- hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics. FEBS Letters, 2000, 267: 2473-2482.

[43]Matsui K,Shibutani M,Hase T, Kajiwara T. Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B). FEBS Letters, 1996, 394:21-24.

[44]Howe G A, Lee G I, Itoh A, Li L, DeRocher A E. Cytochrome P450-dependent metabolism of oxylipins in tomato: Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiology, 2000, 123:711-724.

[45]Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castañera P, Sánchez-Serrano J J. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proceedings of The National Academy of Sciences of The United States of America, 2001, 98(14): 8139-8144.

[46]Weichert H, Kolbe A, Kraus A. Metabolic profiling if oxylipins in germinating cucumber seedlings lipoxygenase- dependant degradation of triacylglycerols and biosynthesis of volatile aldehydes. Planta, 2002, 215:612-619.

[47]Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi Junichiro, Nishioka T, Matsui K, Takabayashi J. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against bothe herbivores and pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 16672-16676. 

[48]Chehab E W, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K. Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS One, 2008, 3(4): 1904-1905.

[49]Hildebrand D F, Brown G C, Jackson D M, Hamiltonkemp T R. Effect of some leaf-emitted volatile compounds in aphid population increase. Journal of Chemical Ecology, 1993, 19:1875-1887.

[50]Grant G G,Ryall K L,Lyons D B,Abou-Zaid M M. Differential response of male and female emerald ash borers (Col., Buprestidae) to (Z)-3-hexenol and manuka oil. Journal of Applied Entomology, 2010, 134: 26-33.

[51]Keassler A, Baldwin I T. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 2001, 291(5511): 2141-2144.

[52]Bate N J, Rothstein S J, C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant Journal, 1998, 16(5):561-569.

[53]Bannenberg G, Martinez M, Hamberg M, Castresana C. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids, 2009, 44(2): 85-95.

[54]Griffiths A, Prestage S, Linforth R, Zhang J L, Taylor A, Grierson D. Fruit-speci?c lipoxygenase suppression in antisense-transgenic tomatoes. Postharvest Biology and Technology, 1999, 17: 163-173.

[55]Heitz T, Bergey D R, Ryan C A. A gene encoding a chloroplast- targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin and methyl jasmonate. Plant Physiology, 1997, 114(3): 1085-1093.

[56]Leon J, Royo J, Vancanneyt G, Sanz C, Silkowski H, Grif?ths G, Sanchez-Serrano J J. Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. Journal of Biological Chemistry, 2002, 277(4): 416-423.

[57]Mario K, Paola A G, Silke A, Ian T B, Gustavo B. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves. New Phytologist, 2011, 191(4): 1054-1068.

[58]Beauchamp J, Wisthaler A, Hansel A, Kleist E, Miebach M, Niinemets Ü, Schurr U, Wildt J. Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake andemission of LOX products. Plant Cell Environment, 2005, 28(10): 1334-1343.

[59]Loreto F, Barta C, Brilli F,Nogues I. On the induction of volatile organic compound emissions by plants as consequence of wounding or ?uctuations of light and temperature. Plant Cell and Environment, 2006, 29(9): 1820-1828.

[60]Froehlich J E, Itoh A,Howe G A. Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiology, 2001, 125(1): 306-317.

[61]Farmaki T, Sanmartín M, Jiménez P, Paneque M, Sanz C, Vancanneyt G, León J, Sánchez-Serrano J J. Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. Journal of Experimental Botany, 2007, 58(3): 555-568.

[62]Lee D S, Nioche P, Hamberg M, Raman C S. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature, 455(18): 363-368.

[63]Toporkova Y Y, Gogolev Y V, Mukhtarova L S, Grechkin A N. Determinants governing the CYP74 catalysis: conversion of allene oxide synthase into hydroperoxide lyase by site-directed mutagenesis. FEBS Letters, 2008, 582(23): 3423-3428.

[64]Mosblech A, Thurow C, Gatz C, Feussner I,Heilmann I. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant Journal, 2011, 65(6): 949-957.

[65]Mosblech A, Feussner I, Heilmann I. Oxylipin signaling and plant growth. Lipid Signaling in Plants, 2010, 16: 277-2918.

[66]穆  丹,付建玉,刘守安,韩宝玉. 虫害诱导的植物挥发物代谢调控机制研究进展. 生态学报,2010, 30(15): 4221-4233.

Mu D, Fu J Y, Liu S A, Han B Y, Advances in metabolic regulation mechanism of herbivore-induced plant volatiles. Acta Ecologica Sinica, 2010, 30(15): 4221-4233.(in Chinese)

[67]van poeck R M P, Posthumus M A, Dicke M. Herbivorce-induced volation production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene- expression analysis. Journal of Chemical Ecology, 2001, 27(10): 1911-1928.

[68]Wasternack C, Kombrink E. Jasmonates: Structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chemical Biology, 2010, 5 (1): 63-77.

[69]Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry, 2009, 46(7): 511-517.

[70]Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution, 2010, 25(3):137-144.

[71]Heil M, Ton J. Long-distance signalling in plant defence. Trends in Plant Science, 2008, 13(6): 264-272.

[72]Heil M. Plant-mediated interactions between above- and below- ground communities at multiple trophic levels. Journal of Ecology, 2011, 99(1): 3-6.

[73]Heil M, Silva Bueno J C. Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(13): 5467-5472.

[74]Engelberth J, Alborn H T, Schmel E A, Tumlinson S H. Airborne signals prime plants against insect herbivore attack. Proceedings of The National Academy of Sciences of The United States of America, 2004, 101(6): 1781-1785.

[75]Christopher J F, Heidi M A, John E C, Consuelo M D M, Mark C M and Jack C S. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters, 2007, 10(6): 490-498.

[76]Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W,Takabayashi J. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 2000, 406: 512-515.

[77]Engelberth J, Viswanathan S, Engelberth M J. Low concentrations of salicylic acid stimulate insect elicitor responses in Zea mays seedlings. Journal of Chemical Ecology, 2011, 37(3): 263-266.

[78]Yan Z, Wang C. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry, 2006, 67(1): 34-42.

[79]Kishimoto K, Matsui K, Ozawa R, Takabayashi J. Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiology, 2005, 46(7): 1093-1102.

[80]Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané L, Farmer E E. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant Journal, 2003, 34(2): 205-216.

[81]Kost C, Heil M. Herbivore-induced plant volatiles induce an indirect defencein neighbouring plants. Journal of Ecology, 2006, 94(3): 619-628.

[82]Ruther J, Kleier S. Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. Journal of Chemical Ecology, 2005, 31(9): 2217-2222.

[83]Loreto F. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant Cell and Environment, 2006, 29(9): 1820-1828.

[84]Frost C J, Mescher M C, Dervinis C, Davis J M, Carlson J E, Moraes C M D. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytologist, 2008, 180(3): 722-734.

[85]Allmann S, Baldwin I T. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science, 2010, 329(5995): 1075-1078.

[86]Hamilton-Kemp T R, McCracken C T, Loughrin J H, Andersen R A, Hildebrand D F. Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. Journal of Chemical Ecology, 1992, 18(7): 1083-1092.

[87]Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez M J, Kift N, Carbonne F, Griffths G, Esquerré-Tugayé M T, Rosahl S, Castresana C, Hamberg M, Fournier J. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiology, 2005, 139:1902-1913.

[88]Kishimoto K, Matsui K, Ozawa R, Takabayashi J. Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry, 2008, 69(11): 2127-2132.

[89]Wright M S , Greene M, Dowelle D M , Zeringue H J, Bhatnagar J D, Cleveland T E. Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Asperigillus parasititicus growth and aflatoxin bio-synthesis. Toxicon, 2000, 38: 1215-1223.

[90]Greene M, Dowelle D M, Ingber B, Wright M S, Zeringue H J J, Bhatnagar D, Cleveland T E. The effects of selected cotton-leaf volatiles on growth, development and a?atoxin production of Aspergillus parasiticus. Toxicon, 1999, 37:883-893.

[91]Pulvera Z M, Kitamura K, Hajika M, Shimada K, Mastsui K. Oxylipin metabolism in soybean seeds containing different sets of lipoxygenase isozymes after homogenization. Bioscience Biotechnology and Biochemistry, 2006, 70(11): 2598-2603.

[92]Arroyo F T, Moreno J, Daza P, Bioanova L, Romero F. Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum. Journal of Agricultural and Food Chemistry, 2007, 55(14): 5701-5707.

[93]Brown G C. Green leaf volatiles inhibit conidial germination of the entomopathogen Pandora neoaphidis (Entomophthiorales: Entophthoraceae). Environmental Entomology, 1995, 24: 1637-1643.

[94]Yi H, Heil M, Adame-Álvarez R M, Ballhorn D J, Ryu C. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiology, 2009, 151: 2152-2161.

[95]Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K. Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus. Journal of Plant Physiology, 2003, 160: 1219-1231.

[96]Ongena M, Duby F, Rossignol F, Fauconnier M L, DommesJ, Thonart P. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interactions, 2004, 17(9): 1009-1018.

[97]Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(47): 16653-16658.

[98]Müller C, Hilker M. The effect of a green leaf volatile on host plant finding by larvae of a herbivorous insect. Naturwissenschaften, 2000, 87: 216-219.

[99]Shimoda T. A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus urticae. Experimental and Applied Acarology, 50(1): 9-22.

[100]Halitschke R, Stenberg J A, Kessler D, Kessler A, Baldwin I T. Shared signals –‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecology Letters, 2008, 11(1): 24-34.

[101]Meldau S, Wu J,Baldwin I T. Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata’s susceptibility to herbivores in the glasshouse and in nature. New Phytologist, 2009, 181(1): 161-173.

[102]Sznajder B, Sabelis M W. Egas M. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour. Journal of Chemical Ecology, 2010, 36(7): 680-688.

[103]Groot P, MacDonald L M. Green leaf volatiles inhibit response of red pine cone beetle Conophthorus resinosae (Coleoptera: Scolytidae) to a sex pheromone. Naturwissenschaften, 1999, 86(2): 81-85.

[104]Li D, Shen J, Wu T, Xu Y F, Zong X J, Li D, Shu H R. Overexpression of the apple alcohol acyltransferase gene alters the profile of volatile blends in transgenic tobacco leaves. Physiologia Plantarum, 2008, 134(3): 394-402.

[105]Zeringue H J J. Effects of C6-C10 alkenals and alkanals on eliciting a defense response in the developing cotton boll. Phytochemistry, 1992, 31(7): 2305-2308.

[106]Mirabella R, Rauwerda H, Struys E A, Jakobs C, Triantaphylidès C, Haring M A, Schuurink R C. The Arabidopsis her1 mutant implicates GABA in E-2-hexenal responsiveness. Plant Journal, 2008, 53: (2):197-213.

[107]Baldwin I T, Halitschke R, Paschold A, von Dahl C C, Preston C A. Volatile signaling in plant-plant interactions: “ Talking trees” in the genomincs era. Science, 2006, 311(5762): 812-815.

[108]Turlings T C J, Ton J. Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Current Opinion in Plant Biology, 2006, 9(4): 421-427.

[109]Ton J, D'Alessandro M, Jourdie V, Jakab G, Karlen D, Held        M, Mauch-Man B, Turlings T C J. Priming by airborne signals  boosts direct and indirect resistance in maize. Plant Journal, 2006, 49: 16-26.

[110]Arimura G, Shiojiri K, Karban R. Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry, 2010, 71: 1642-1649.

[111]Arimura G, Kost C, Boland W. Herbivore-induced, indirect plant defences. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2005, 1734(2): 91-111.

[112]邓晓军, 陈晓亚, 杜家纬. 植物挥发性物质及其代谢工程. 植物生理与分子生物学报, 2004, 30(1): 11-18.

Deng X J, Chen X Y, Du J W. Plant volatiles and their metabolic engineering. Journal of Plant Physiology and Molecular Biology, 2004, 30(1): 11-18.(in Chinese)
[1] ZHANG FuYan, CHEN Feng, CHENG ZhongJie, YANG BaoAn, FAN JiaLin, CHEN XiaoJie, ZHANG JianWei, CHEN YunTang, CUI Long. Effects of TaLox-B Alleles on Lipoxygenase Activity and Flour Color in Wheats [J]. Scientia Agricultura Sinica, 2017, 50(8): 1370-1377.
[2] ZHOU JingLong, FENG ZiLi, FENG HongJie, LI YunQing, YUAN Yuan, LI ZhiFang, WEI Feng, SHI YongQiang, ZHAO LiHong, SUN ZhengXiang, ZHU HeQin, ZHOU Yi. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium Bacillus cereus YUPP-10 Against Verticillium Wilt in Gossypium hirsutum [J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727.
[3] WU Pei-pei, SONG Shuang, ZHANG Fu-yan, CHEN Feng, CUI Dang-qun. The Allelic Variation of Lipoxygenase Genes in Bread Wheat Cultivars from the Yellow and Huai Wheat Areas of China [J]. Scientia Agricultura Sinica, 2015, 48(2): 207-214.
[4] ZHENG Wen-Yin, WANG Fan, SI Hong-Qi, ZHANG Wen-Ming, YAO Da-Nian. Variations of LOX and PPO Activities and Carotenoid Content as Well as Their Influence on Whole Flour Color in Common Wheat [J]. Scientia Agricultura Sinica, 2013, 46(6): 1087-1094.
[5] CAO Shi-Xian, CHENG Xi, JIANG Zheng-Zhong, SHENG Liang, SHANG Guan-Ming-Zhu, DENG Wei-Wei, WEI Chao-Ling. Differential Genes Expression in Tea Plant (Cameilla sinensis L.) Induced by Ectropis oblique Feeding Based on cDNA-AFLP [J]. Scientia Agricultura Sinica, 2013, 46(19): 4119-4130.
[6] CHEN Qiao, CHEN Shu-Xia, WANG Cong-Ying, HAO Li-Ning, MENG Huan-Wen, WAN Xu-Hua, SHEN Xiao-Qing, CHENG Zhi-Hui. Cloning and Expression Analysis of Lipoxygenase Gene CsLOX2 in Cucumis sativus (Cucumber) [J]. Scientia Agricultura Sinica, 2013, 46(11): 2285-2297.
[7] KONG Xiang-Jia, LIN He-Tong, ZHENG Jun-Feng, LIN Yi-Fen, CHEN Yi-Hui. Hot-Air Treatment Induced Chilling Tolerance of Cold-Stored Chinese Olive Fruits and Its Relation to the Metabolism of Membrane Lipids [J]. Scientia Agricultura Sinica, 2012, 45(4): 752-760.
[8] ZHENG Wen-yin, WANG Hui, CUI Wen-li, ZHANG Wen-ming, YAO Da-nian. Lipoxygenase Activity in 104 Wheat Varieties [J]. Scientia Agricultura Sinica, 2011, 44(9): 1798-1805.
[9] HE Quan-guang,KUANG Jian-fei,CHEN Jian-ye,LU Wang-jin
. The Role of Lipoxygenase in Banana Fruit Ripening
[J]. Scientia Agricultura Sinica, 2011, 44(1): 118-124 .
[10] YU Hua-juan,SUN Zhi-da,XIE Bi-jun
. Antioxidation Role of Procyanidins from Lotus Seedpod in Oils
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2132-2140 .
[11] MA Jian,ZHANG Jun,QU Jing,WANG Yun-peng,WEI Yi-fan,WANG Pi-wu
. Development of Novel Soybean Germplasms with Low Activity of Lipoxygenases by RNAi Method
[J]. Scientia Agricultura Sinica, 2009, 42(11): 3804-3811 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!