Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (15): 3115-3124.doi: 10.3864/j.issn.0578-1752.2013.15.005

• PLANT PROTECTION • Previous Articles     Next Articles

Progress and Perspectives in Research of Chitin Triggered Immunity in Plant

 TIAN  Yi-12, KANG  Guo-Dong-1, ZHANG  Cai-Xia-1, ZHANG  Li-Yi-1, HAO  Yu-Jin-2, CONG  Pei-Hua-1   

  1. 1.Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Fruit Germplasm Resourses Utilization, Ministry of Agriculture, Xingcheng 125100, Liaoning
    2.College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai'an 271018, Shandong
  • Received:2013-01-15 Online:2013-08-01 Published:2013-05-06

Abstract: Fungal diseases are the most serious plant diseases, and about 70%-80% plant diseases are caused by fungi worldwide. Chitin, a major component of fungal cell walls, is a typical pathogen-associated molecular pattern. When plant is attacked by fungal pathogens, the pattern recognition receptors located on the plasma membrane can recognize chitin and chitin oligosaccharide and trigger plant innate immunity. In recent years, the plant chitin receptors have been successfully identified. Subsequently, the molecular mechanism of interactions between chitin and its receptors and how the chitin triggered innate immunity were studied intensively. To comprehensively, systemically introduce the history, research status and development trend of chitin triggered immunity, the chitin recognition mechanism, signal transduction and fungal pathogen suppressing chitin triggered innate immunity were summarized. Additionally, research directions of chitin triggered immunity were discussed.

Key words: fungal pathogen , chitin , pathogen-associated molecular pattern (PAMP) , pattern recognition receptor (PRR) , disease resistance

[1]程曦, 田彩娟, 李爱宁, 邱金龙. 植物与病原微生物互作分子基础的研究进展. 遗传, 2012, 34(2): 134-144.

Cheng X, Tian C J, Li A N, Qiu J L. Advances on molecular mechanisms of plant-pathogen interactions. Hereditas, 2012, 34(2): 134-144. (in Chinese)

[2]Ausubel F M. Are innate immune signaling pathways in plants and animals conserved ? Nature Immunology, 2005, 6: 973-979.

[3]Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742-744.

[4]Gust A A, Brunner F, Nürnberger T. Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology, 2010, 21(2): 204-210.

[5]Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.

[6]Feng F, Zhou J M. Plant-bacterial pathogen interactions mediated by type Ⅲ effectors. Current Opinion in Plant Biology, 2012, 15(4): 469-476.

[7]Gururani M A, Venkatesh J, Upadhyaya C P, Nookaraju A, Pandey S K, Park S W. Plant disease resistance genes: current status and future directions. Physiological and Molecular Plant Pathology, 2012, 78: 51-65.

[8]阙友雄, 宋弦弦, 许莉萍, 陈如凯. 植物与病原真菌互作机制研究进展. 生物技术通讯, 2009, 20(2): 282-285.

Que Y X, Song X X, Xu L P, Chen R K. Research progress on the interaction mechanism between plant and fungi. Letters in Biotechnology, 2009, 20(2): 282-285. (in Chinese)

[9]戴景程, 黄建国, 王春连, 赵开军. 病原菌保守特征分子及其介导的植物抗病性. 微生物学通报, 2012, 39(4): 553-565.

Dai J C, Huang J G, Wang C L, Zhao K J. Pathogen conservation molecules and PAMP-triggered innate immunity in plants. Microbiology China, 2012, 39(4): 553-565. (in Chinese)

[10]Natio K, Taquchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Amino acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Molecular Plant- Microbe Interactions, 2008, 21(9): 1165-1174.

[11]Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 2004, 16(12): 3496-3507.

[12]Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell, 2006, 18(2): 465-476.

[13]Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D G, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125(4): 749-760.

[14]Lee S W, Han S W, Sririyanum M, Park C J, Seo Y S, Ronald P C. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 2009, 326(5954): 850-853.

[15]Hamel L P, Beaudoin N. Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta, 2010, 232(4): 787-806.

[16]Lenardon M D, Munro C A, Gow N A R. Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology, 2010, 13(4): 416-423.

[17]Bishop J G, Dean A M, Mitchell-Olds T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5322-5327.

[18]Shibuya N, Minami E. Oligosaccharide signaling for defence responses in plant. Physiological Molecular Plant Pathology, 2001, 59: 223-233.

[19]Felix G, Regenass M, Boller T. Specific perception of subnanomolar concentrations of chitin fragements by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 1993, 4(2): 307-316.

[20]Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29): 11086-11091.

[21]Joris B, Englebert S, Chu C P, Kariyama R, Daneomoore L, Shockman G D, Ghuysen J M. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiology Letters, 1992, 91(3): 257-264.

[22]Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19613-19618.

[23]Wan J, Zhang X C, Neece D, Ramonell K M, Clough S, Kim S, Stacey M G, Stacey G. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. The Plant Cell, 2008, 20(2): 471-481.

[24]Lizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. The Journal of Biological Chemistry, 2010, 285: 2996-3004.

[25]Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. The Plant Journal, 2010, 64(2): 204-214.

[26]Petutschnig E K, Jones A M E, Serazetdinova L, Lipka U, Lipka V. The lysine motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. The Journal of Biological Chemistry, 2010, 285(37): 28902-28911.

[27]Shiya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, Kaku H, Shibuya N. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant & Cell Physiology, 2012, 53(10): 1696-1706.

[28]Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou J M, Chai J. Chitin-induced dimerization activates a plant immune receptor. Science, 2012, 336(6085): 1160-1164.

[29]Wan J, Tanaka K, Zhang X C, Son G H, Brechenmacher L, Nguyen T H N, Stacey G. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiology, 2012, 160(1): 396-406.

[30]Willmann R, Lajunen H M, Erbs G, Newman M A, Kolb D, Tsuda K, Katagiri F, Hliegmann J, Bono J J, Cullinore J V, Jehle A K, Götz F, Kulik A, Molinaro A, Lipka V, Gust A A, Nürnberger T. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19824-19829.

[31]Liu B, Li J F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y, Wang J, Wang H B. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. The Plant Cell, 2012, 24(8): 3406-3419.

[32]Brotman Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller- Roeber B, Ziberstein A, Willmitzer L, Chet L, Viterbo A. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. Molecular Plant, 2012, 5(5): 1113-1124.

[33]Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, Koga H, Nishizawa Y, Cornell R O, Kubo Y. HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biology, 2010, 10: 288.

[34]Fliegmann J, Uhlenbroich S, Shinya T, Martinez Y, Lefebvre B, Shibuya N, Bono J J. Biochemical and phylogenetic analysis of CEBiP-like LysM domain-containing extracellular proteins in higher plants. Plant Physiology and Biochemistry, 2011, 49(7): 709-720.

[35]Zeng L, Velásquez A C, Munkvold K R, Zhang J, Martin G B. A tomato LysM receptor-like kinase promotes immunity and its kinase activaty is inhibited by AvrPtoB. The Plant Journal, 2012, 69(1): 92-103.

[36]Amor B B, Shaw S L, Oldroyd G E O, Maillet F, Penmetsa R V, Cook D, Long S R, Denarie J, Gough C. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. The Plant Journal, 2003, 34(4): 495-506.

[37]Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan J T, Maolanon N, Vinther M, Lorentzen A, Madsen E B, Jensen K J, Roepstorff P, Thirup S, Ronson C W, Thygesen M B, Stougaard J. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(34): 13859-13864.

[38]Zhang X C, Wu X, Findley S, Wan J, Libault M, Nguyen H T, Cannon S B, Stacey G. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiology, 2007, 144(2): 623-636.

[39]Zhang X C, Cannon S B, Stacey G. Evolutionary genomics of LysM genes in land plants. BMC Evolutionary Biology, 2009, 9: 183.

[40]Chen L, Hamada S, Fujiwara M, Zhu T, Thao N P, Wong H L, Krishna P, Ueda T, Kaku H, Shibuya N, Kawasaki T, Shimamoto K. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host & Microbe, 2010, 7(3): 185-196.

[41]Ono E, Wong H L, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. Essential role of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 759-764.

[42]Lieberherr D,Thao N P, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiology, 2005, 138(3): 1644-1652.

[43]Kim S H, Oikawa T, Kyozuka J, Wong H L, Umemura K, Kishi-Kaboshi M, Takahshi A, Kawano Y, Kawasaki T, Shimamoto K. The bHLH Rac immunity 1 (RAI 1) is activated by OsRac1 via OsMAPK3 and MAPK6 in rice immunity. Plant & Cell Physiology, 2012, 53(4): 740-754.

[44]Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimanoto K, Yoshioka H, Kawasaki T. A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host & Microbe, 2013, 13(3): 347-357.

[45]Serrano M, Guzmán P. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics, 2004, 167(2): 919-929.

[46]Wan J, Zhang S, Stacey G. Activation of a mitogen-activated protein kinse pathway in Arabidopsis by chitin. Molecular Plant Pathology, 2004, 5(2): 125-135.

[47]Ramonell K, Zhang B, Ewing R M, Chen Y, Xu D, Stacey G, Somerville S. Microarray analysis of chitin elicitation in Arabidopsis thaliana. Molecular Plant Pathology, 2002, 3(5): 301-311.

[48]Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiology, 2005, 138(2): 1027-1036.

[49]Yamaguchi T, Minami E, Ueki J, Shibuya N. Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspension-cultured rice cells. Plant & Cell Physiology, 2005, 46(4): 579-587.

[50]Libault M, Wan J, Czechowski T, Udvardi M, Stacey G. Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Molecular Plant- Microbe Interactions, 2007, 20(8): 900-911.

[51]Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, Ramonell K  M, Somerville S. ATL9, a RING zinc protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. Plos One, 2010, 5(12): e14426.

[52]Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou J M. Receptor-like cytoplasmic kinases integrate signaling targeted by a Pseudomonas syringae effector. Cell Host & Microbe, 2010, 7(4): 290-301.

[53]Yang X, Deng F, Ramonell K M. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. Frontiers in Biology, 2012, 7(2): 155-166.

[54]Zhang B, Ramonell K, Somerville S, Stacey G. Characterization of early, chitin-induced gene expression in Arabidopsis. Molecular Plant-Microbe Interactions, 2002, 15(9): 963-970.

[55]Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. Plos Genetics, 2012, 8(6): e1002767.

[56]Han L, Li G J, Yang K Y, Mao G, Wang R, Liu Y, Zhang S. Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. The Plant Journal, 2010, 64(1): 114-127.

[57]Meng X, Xu J, He Y, Yang K Y, Mordorski B, Liu Y, Zhang S. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. The Plant Cell, 2013, 25(3): 1126-1142.

[58]Tena G, Boudsocq M, Sheen J. Protein kinase signaling networks in plant  innate immunity. Current Opinion in Plant Biology, 2011, 14(5): 519-529.

[59]Galletti R, Ferrari S, Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiology, 2011, 157(2): 804-814.

[60]Son G H, Wan J, Kim H J, Nuyen X C, Chung W S, Hong J C, Stacey G. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Molecular Plant-Microbe Interactions, 2012, 25(1): 48-60.

[61]Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. The Plant Cell, 2011, 23(4): 1639-1653.

[62]Wang P, Du Y, Zhao X, Miao Y, Peng C. The MPK6-ERF6-ROSE7/ GCC-box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis thaliana. Plant Physiology, 2013, DOI: 10.1104/ pp.112. 210724.

[63]Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez- Gomez L, Boller T, Ausubel F M, Sheen J. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 2002, 415: 977-983.

[64]He P, Shan L, Lin N C, Martin G B, Kemmerling B, Nürnberger T. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell, 2006, 125(3): 563-575.

[65]Kishi-Kaboshi M, Okade K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takatsuji A, Hirochika H. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. The Plant Journal, 2010, 63(4): 599-612.

[66]Ichimura K, Shinozaki K , Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7(7): 301-308.

[67]Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Review Genetics, 2010, 11: 539-548.

[68]Antolín-Llovera M, Reid M K, Binder A, Parniske M. Receptor kinase signaling pathways in plant-microbe interactions. Annual Review of Phytopathology, 2012, 50: 451-473.

[69]De Wit P J G M, Mehrabi R, Van Den Burg H A, Stergiopoulos I. Fungal effector proteins: past, present and future. Molecular Plant Pathology, 2009, 10(6): 735-747.

[70]Dou D, Zhou J M. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host & Microbe, 2012, 12(4): 484-495.

[71]Gimenez-lbanez S, Hann D R, Ntoukakis V, Petutschnig E, Lipka V, Rathjen J P. AvrPtoB targets the lysM receptor kinase CERK1 to promote bacterial virlence on plants. Current Biology, 2009, 19(5): 423-429.

[72]van den Burg H A, Harrison S J, Joosten M H, Vervoort J, de Wit P J. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interactions, 2006, 19(12): 1420-1430.

[73]van Esse H P, Bolton M D , Stergiopoulos L, de Wit P J G M, Thomma B P H J. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Molecular Plant-Microbe Interactions, 2007, 20(9): 1092-1101.

[74]de Jonge R, van Esse H P, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten M H A J, Thomma B P H J. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science, 2010, 329(5994): 953-955.

[75]Mentlak T A, Kombrink A, Shinya T, Ryder L S, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Naoto S, Thomma B P H J, Talbot N J. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell, 2012, 24(1): 322-335.

[76]Park C J, Caddell D F, Ronald P C. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor- mediated signaling. Frontiers in Plant Science, 2012, 3: 177.

[77]Hoehenwarter W, Thomas M, Nukarinen E, Egelhofer V, Röhrig H, Weckwerth W, Conrath U, Becker G J M. Identification of novel in vivo MAP Kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Molecular & Cellular Proteomics, 2013, 20: 369-380.

[78]Singh R, lee M O, Lee J E, Choi J, Park H, Kim E H, Yoo R H, Cho J, Jeon J S, Rakwal R, Agrawal G K, Moon J S, Jwa N S. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system. Plant Physiology, 2012, 160(1): 477-487.

[79]Nühse T S, Bottrill A R, Jones A M E, Peck S C. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. The Plant Journal, 2007, 51(5): 931-940.

[80]Rigbolt K T G, Blagoev B. Quantitative phosphoproteomics to characterize signaling networks. Seminars in Cell & Developmental Biology, 2012, 23(8): 863-871.

[81]Xue L, Wang W H, Iliuk A, Hu L, Galan J A, Yu S, Hans M, Geahlen R L, Tao W A. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(15): 5615-5620.

[82]Marino D, Peeters N, Rivas S. Ubiquitination during plant immune signaling. Plant Physiology, 2012, 160(1): 15-27.
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[8] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[9] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[10] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[11] SHI GuoLiang,WU Qiang,YANG NianWan,HUANG Cong,LIU WanXue,QIAN WanQiang,WAN FangHao. Gene Cloning, Expression Pattern and Molecular Characterization of Chitin Deacetylase 2 in Cydia pomonella [J]. Scientia Agricultura Sinica, 2021, 54(10): 2105-2117.
[12] LONG Qin,DU MeiXia,LONG JunHong,HE YongRui,ZOU XiuPing,CHEN ShanChun. Effect of Transcription Factor CsWRKY61 on Citrus Bacterial Canker Resistance [J]. Scientia Agricultura Sinica, 2020, 53(8): 1556-1571.
[13] Cheng LIU,Ran HAN,XiaoLu WANG,WenPing GONG,DunGong CHENG,XinYou CAO,AiFeng LIU,HaoSheng LI,JianJun LIU. Research Progress of Wheat Wild Hybridization, Disease Resistance Genes Transfer and Utilization [J]. Scientia Agricultura Sinica, 2020, 53(7): 1287-1308.
[14] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[15] YaRu CHAI,YiJuan DING,SiYu ZHOU,WenJing YANG,BaoQin YAN,JunHu YUAN,Wei QIAN. Identification of the Resistance to Sclerotinia Stem Rot in HIGS-SsCCS Transgenic Arabidopsis thaliana [J]. Scientia Agricultura Sinica, 2020, 53(4): 761-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!