Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (9): 1946-1955.doi: 10.3864/j.issn.0578-1752.2013.09.023

• RESEARCH NOTES • Previous Articles     Next Articles

Expression Profiling of Cotton (Gossypium hirsutum L.) Trihelix Genes Responsive to Abiotic Stresses

 LI  Yue, SUN  Jie, XIE  Zong-Ming, LI  Quan-Sheng, SI  Ai-Jun, CHEN  Shou-Yi   

  1. 1.Agricultural College, Shihezi University/The Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group, Shihezi 832003, Xinjiang
    2.Center for Molecular Agrobiotechnology and Breeding, Xinjiang Academy of Agricultural and Reclamation Science/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shihezi 832000, Xinjiang
    3.Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/National Key Laboratory of Plant Genomics, Beijing 100101
  • Received:2012-12-04 Online:2013-05-01 Published:2013-03-28

Abstract: 【Objective】The objective of this study is to dissect cotton trihelix genes expression alteration responsive to different abiotic stresses, thus providing a foundation for stress-related genes cloning and elucidating the molecular mechanism of cotton stress-resistance.【Method】Semi-quantitative RT-PCR and real-time PCR were employed to reveal the expression profiling of 24 GhGTs under different abiotic stresses (200 mmol.L-1 NaCl, drought, 4℃) and exogenous hormone (100 μmol.L-1ABA) treatments.【Result】The results showed that the expression of 12 GhGT genes were up- and down-regulated by salinity and drought stresses, and that of 7 GhGT genes and 9 GhGT genes were up- and down-regulated by cold and ABA treatments, respectively. Moreover, three genes including GhGT2, GhGT18 and GhGT23 were response to all above treatments. 【Conclusion】The results suggested that GhGTs may play important roles in upland cotton plant abiotic stress adaption.

Key words: cotton , trihelix transcription factor , abiotic stress , expression

[1]Riechmann J L, Ratclife O J. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology, 2000, 3: 423-434.

[2]刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 中国科学通报, 2000, 45(14): 1465-1474.

Liu Q, Zhang G Y, Chen S Y. Structure and regulatory function of plant transcription factors. Chinese Science Bull, 2000, 45(14): 1465-1474. (in Chinese)

[3]Dehesh K, Hung H, Tepperman J M, Quail P H. GT-2: A transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity. The EMBO Journal, 1992, 11: 4131-4144.

[4]Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.

[5]Kaplan-Levy R N, Brewer P B, Quon T, Smyth D R. The trihelix family of transcription factors-light, stress and development. Trends in Plant Science, 2012, 17: 163-171.

[6]Zhou D X. Regulatory mechanism of plant gene tranxcription by GT-elemnets and GT-factors. Trends in Plant Science, 1999, 4: 210-214.

[7]Green P J, Kay S A, Chua N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. The EMBO Journal, 1987, 6: 2543-2549.

[8]Lawton M A, Dean S M, Dron M, Kooter J M, Kragh K M, Harrison M J, Yu L, Tanguay L, Dixon R A, Lamb C J. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Molecular Biology, 1991, 16: 235-249.

[9]Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park CY, Jeong J C, Moon B C, Lee J H, Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. Pathogen and NaCl induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 2004, 135: 2150-2161.

[10]Eyal Y, Curie C, McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. The Plant Cell, 1995, 7: 373-384.

[11]Villain P, Clabault G, Macke R, Zhou D X. S1F binding site is related to but different from the light-responsive GT-1 binding site and differentially represses the spinach rpsl promoter in transgenic tobacco. Journal of Biological Chemistry, 1994, 269: 16626-16630.

[12]Villain P, Mache R, Zhou D X. The mechanism of GT element-mediated cell type-specific transcriptional control. Journal of Biological Chemistry, 1996, 271: 32593-32598.

[13]Ayadi M, Delaporte V, Li Y F, Zhou D X. Analysis of GT-3a identifies a distinct subgroup of trihelix DNA-binding transcription factors in Arabidopsis. FEBS Letters, 2004, 562: 147-154.

[14]Kuhn R M, Caspar T, Dehesh K, Quail P H. DNA-binding factor GT-2 from Arabidopsis. Plant Molecular Biology, 1993, 23: 337-348.

[15]Dehesh K, Bruce W B, Quail P H. A trans-acting factor that binds to a GT-motif in phytochrome gene promoter. Science, 1990, 250: 1397-1399.

[16]Griffith M E, da Silva Conceição A, Smyth D R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development, 1999, 126: 5635-5644.

[17]Brewer P B, Howles P A, Dorian K, Griffith M E, Ishida T, Kaplan-Levy R N, Kilinc A, Smyth D R. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development, 2004, 131: 4035-4045.

[18]Li X, Qin G, Chen Z, Gu H, Qu L J. Again-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Molecular Biology, 2008, 66: 315-327.

[19]Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney T C, McElver J, Aux G, Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiology, 2004, 135: 1206-1220.

[20]Smalle J, Kurepa J, Haegman M, Gielen J, Van Montagu M, Van Der Straeten D. The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 3318-3322.

[21]Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome. The Plant Cell, 2009, 21: 2307-2322.

[22]Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. The Plant Cell, 2010, 22: 4128-4141.

[23]Pagnussat G C, Yu H J, Ngo Q A, Rajani S, Mayalagu S, Johnson C S, Capron A, Xie L F, Ye D, Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development, 2005, 132: 603-614.

[24]Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939.

[25]Lin Z, Griffith M E, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11-20.

[26]Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A  G, Ma B, Zhang W K, Zhang J S, Chen S Y. Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PLoS ONE, 2009, 4: e6898.

[27]Fang Y, Xie K, Hou X, Hu H, Xiong L. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Molecular Genetics and Genomics, 2010, 283: 157-169.

[28]Xi J, Qiu Y, Du L, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Science, 2012, 185: 274-280.

[29]李月, 孙杰, 陈受宜, 谢宗铭. 棉花转录因子GhGT30基因的克隆及转录功能分析. 作物学报, 2013, 39(4): 1-10.

Li Y, Sun J, Chen S Y, Xie Z M. Cloning and transcription function analysis of cotton transcription factor GhGT30 gene. Acta Agronomica Sinica, 2013, 39(4): 1-10. (in Chinese)

[30]胡根海, 喻树迅. 利用改良的CTAB法提取棉花叶片总RNA. 棉花学报, 2007, 19(1): 69-70.

Hu G H, Yu S X. Extraction of high-quality total RNA in cotton leaf with improved CTAB method. Cotton Science, 2007, 19(1): 69-70. (in Chinese)

[31]Guo A Y, Chen X, Gao G, Zhang H, Zhu Q H, Liu X C, Zhong Y F, Gu X C, He K, Luo J C. PlantTFDB: A comprehensive plant transcription factor database. Nucleic Acids Research, 2008, 36: 966-969.

[32]Zuo K J, Qin J, Zhao J Y, Ling H, Zhang L D, Cao Y F, Tang K X. Over-expression GbER transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene, 2007, 391: 80-90.

[33]Guo R, Yu F, Gao Z, An H, Cao X, Guo X. GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Molecular Biology Reports, 2011, 38: 49-58.

[34]Zhang Y G, Wang Q H , Zhang X, Liu X L, Wang P , Hou Y X. Cloning and characterization of an annexin gene from Cynanchum komarovii that enhances tolerant to drought and Fusarium oxysporum in transgenic cotton. Plant Biology, 2011, 54: 303-313.
[1] SHEN LongXian, WANG LiTing, HE Ke, DU Xue, YAN FeiFei, CHEN WeiHu, LÜ YaoPing, WANG Han, ZHOU XiaoLong, ZHAO AYong. Effects of Melatonin and Nicotinamide Mononucleotides on Proliferation of Skeletal Muscle Satellite Cells in Goose [J]. Scientia Agricultura Sinica, 2023, 56(2): 391-404.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] MO WenJing,ZHU JiaWei,HE XinHua,YU HaiXia,JIANG HaiLing,QIN LiuFei,ZHANG YiLi,LI YuZe,LUO Cong. Functional Analysis of MiZAT10A and MiZAT10B Genes in Mango [J]. Scientia Agricultura Sinica, 2023, 56(1): 193-202.
[5] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[6] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[7] LI ShiJia,LÜ ZiJing,ZHAO Jin. Identification of R2R3-MYB Subfamily in Chinese Jujube and Their Expression Pattern During the Fruit Development [J]. Scientia Agricultura Sinica, 2022, 55(6): 1199-1212.
[8] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[9] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[10] ZHAO HuiTing,PENG Zhu,JIANG YuSuo,ZHAO ShuGuo,HUANG Li,DU YaLi,GUO LiNa. Expression and Binding Properties of Odorant Binding Protein AcerOBP7 in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(3): 613-624.
[11] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[12] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[13] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[14] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[15] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!