Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (8): 1523-1532.doi: 10.3864/j.issn.0578-1752.2013.08.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Wheat Photosynthetic and Temperature Production Efficiency Characters and Varieties Screening Based on Recombinant Inbred Lines Populations

 DU  Li-Feng, GAO  Li-Feng, ZHOU  Rong-Hua, SONG  Yan-Xia, ZHAO  Dong-Cheng, JIA  Ji-Zeng, REN  Zheng-Long   

  1. 1.College of Agronomy, Sichuan Agricultural University, Chengdu 610000
    2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture of the People’s Republic of China, Beijing 100081
    3.Jiaozuo Academy of Agriculture and Forestry Sciences/Jiaozuo New Harvest Agricultural Science and Technology Company, Jiaozuo 454000, Henan
  • Received:2012-11-30 Online:2013-04-15 Published:2013-03-13

Abstract: 【Objective】Study on the photosynthetic and temperature production efficiency (P&TPE) genetically and biologically will provide a theoretical basis for high-P&TPE wheat varieties breeding.【Method】The statistical methods of regression and clustering were applied to illustrate the relationship between P&TPE and main agronomic characters of RIL populations derived from a cross between Neixiang 188 and Yanzhan 1(NY). Association analysis was used to identify loci significantly related to P&TPE. Molecular marker-assisted selection was used in cultivating wheat new varieties of H-P&TPE. 【Result】Positive correlations were detected between P&TPE and spikes per plant, grain number per spike, average filling rate, the maximum filling rate of wheat, of which, spikes per plant had the highest effects on P&TPE. PPE and TPE were influenced greatly by the average and maximum filling rate, respectively. Eleven loci were identified to be significantly associated with P&TPE in at least two environments, of which, four loci (Xwmc167-2D, Xcwm23-2D, Xbarc218-3A and Xwmc326-3B) contributed more than 10% of the phenotypic variations. By molecular marker selection, five lines were screened from the 49 lines analyzed here which showed excellent performance in yield and P&TPE. 【Conclusion】There existed genetic loci conferring P&TPE in wheat genomes. Loci selection in populations with elite agronomic traits is an alternative approach to the low efficiency of MAS.

Key words: wheat , photosynthetic and temperature production efficiency , gene loci , MAS

[1]姜长云, 张艳平. 我国粮食生产的现状和中长期潜力. 经济研究与参考, 2009, 15: 16-30.

Jiang C Y, Zhang Y P. Chinese grain production of the present situation and the medium and long term potential. Review of Economic Research, 2009, 15: 16-30. (in Chinese)

[2]马建堂. 中国统计年鉴-2011. 北京: 中国统计出版社, 2012.

Ma J T. China Statistics Year Book-2011. Beijing: China Statistics Press, 2012. (in Chinese)

[3]黎裕, 王建康, 邱丽娟, 马有志, 李新海, 万建民. 中国作物分子育种现状与发展前景. 作物学报, 2010, 36(9): 1425-1430.

Li Y, Wang J K, Qiu L J, Ma Y Z, Li X H, Wan J M. Crop molecular breeding in China current status and perspectives. Acta Agronomica Sinica, 2010, 36(9): 1425-1430. (in Chinese )

[4]程建峰, 沈允钢. 作物高光效之管见. 作物学报, 2010, 36(8): 1235-1247.

Cheng J F, Shen Y G. My humble opinions on high photosynthetic efficiency of crop. Acta Agronomica Sinica, 2010, 36(8): 1235-1247. (in Chinese)

[5]Ku M S B, Sakamae A, Mika N, Hiroshi F, Hiroko T, Kazuko O, Sakiko H, Seiichi T, Mitsue M, Makoto M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 1999, 17: 76-78.

[6]Li G H, Xue L H, Gu W, Yang C D, Wang S H, Ling Q H, Qin X, Ding Y F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a ‘special eco-site’ and Nanjing, China. Field Crops Research, 2009, 112: 214-221.

[7]杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. 作物学报, 2006, 32(7): 949-955.

Yang J C, Wang P, Liu L J, Wang Z Q, Zhu Q S. Evolution characteristics of grain yield and plant type for mid-season Indica rice cultivars. Acta Agronomica Sinica, 2006, 32(7): 949-955. (in Chinese)

[8]Asli D, Houshmandfar A. Rubisco and PEP-carboxylase levels in relation to grain development within a spikelet of wheat. Advances in Environmental Biology, 2011, 5(7): 1746-1750. [9]Barta C, Carmo-Silva A E, Salvucci M E. Rubisco activase activity assays. Methods in Molecular Biology, 2011, 684: 375-382.

[10]贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探. 植物生态学报, 2010, 34(12): 1439-1447.

Jia S F, Li C F, Dong S T, Zhang J W. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays). Chinese Journal of Plant Ecology, 2010, 34(12): 1439-1447. (in Chinese )

[11]Reynolds M, Foulkes M J, Slafer G A, Berry P, Parry M A, Snape J, Angus W J. Raising yield potential in wheat. Journal of Experimental Botany, 2009, 60(7): 1899-1918.

[12]付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明. 冬小麦-夏玉米“双晚"种植模式的产量形成及资源效率研究. 作物学报, 2009, 35(9): 1708-1714.

Fu X L, Zhang H, Jia J Z, Du L F, Fu J D, Zhao M. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agronomica Sinica, 2009, 35(9): l708-l714. (in Chinese)

[13]Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: Current status and future prospects. Theoretical and Applied Genetics, 2012, 125(1): 1-10.

[14]Peng S B, Khusha G S, Virka P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108: 32-38.

[15]许为钢, 胡琳, 姚建华, 严文献, 盖钧镒. 关中地区小麦品种株型变化的研究. 西北农业大学学报, 1996, 24(6): 20-24.

Xu W G, Hu L, Yao J H, Yan W X, Gai J Y. Studies on changes of wheat plant type in Shaanxi central plain. Acta Universitatis Agriculturae Boreali-occidentalis, 1996, 24(6): 20-24. (in Chinese )

[16]张玲丽, 王辉, 孙道杰, 冯毅. 高产小麦品种冠层形态结构及其与产量性状的关系. 西北植物学报, 2004, 24(7): 1211-1215.

Zhang L L, Wang H, Sun D J, Feng Y. Canopy morphology structure and its correlation with yield characters of high-yield wheat cultivars. Acta Botanica Boreali-occidentalia Sinica, 2004, 24(7): 1211-1215. (in Chinese)

[17]杨春玲, 关立, 侯军红, 王阔, 宋志均, 韩勇, 李晓亮. 黄淮麦区小麦产量构成因素效用研究. 山东农业科学, 2007, 4: 19-23.

Yang C L, Guan L, Hou J H, Wang K, Song Z J, Han Y, Li X L. Study on the yield components of wheat in Huang-huai region. Shandong Agricultural Sciences, 2007, 4: 19-23. (in Chinese )

[18]周羊梅, 郭文善, 封超年, 朱新开, 葛才林, 彭永欣. 小麦无效  分蘖14C光合产物的运转与分配. 作物学报, 2005, 31(12): 1665-1667.

Zhou Y M, Guo W S, Feng C N, Zhu X K, Ge C L, Peng Y X. Transportation and distribution of 14C photosynthate produced in ineffective tillers of wheat. Acta Agronomica Sinica, 2005, 31(12): 1665-1667. (in Chinese)

[19]乔玉强, 曹承富, 赵竹, 杜世州, 张耀兰, 刘永华. 超高产小麦品种籽粒灌浆速率及其品质特性分析. 浙江农业学报, 2011, 23(2): 221-225.

Qiao Y Q, Cao C F, Zhao Z, Du S Z, Zhang Y L, Liu Y H. Filling rate and filling quality characteristics of super high yielding wheat. Acta Agriculturae Zhejiangensis, 2011, 23(2): 221-225. (in Chinese)

[20]Zhang Z B, Xu P, Jia J Z, Zhou R H. Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Australian Journal of Crop Science, 2010, 4(8): 571-579.

[21]Suzuki T, Sato M, Takeuchi T. Evaluation of the effects of five QTL regions on Fusarium head blight resistance and agronomic traits in spring wheat (Triticum aestivum L.). Breeding Science, 2012, 62(1): 11-17.

[22]王瑞霞, 张秀英, 伍玲, 王瑞, 海林, 闫长生, 游光霞, 肖世和.  不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析. 作物学报, 2008, 34(10): 1750-1756.

Wang R X, Zhang X Y, Wu L, Wang R, Hai L, Yan C S, You G X, Xiao S H. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agronomica Sinica, 2008, 34(10): 1750-1756. (in Chinese)

[23]Ali M L, Baenziger P S, Ajlouni Z A, Campbell B T, Gill K S, Eskridge K M, Mujeeb-Kazi A, Dweikat I. Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Science, 2011, 51(2): 553-566.

[24]Dhungana P, Eskridge K M, Baenziger P S, Campbell B T, Gill K S, Dweikat I. Analysis of Genotype-by-Environment interaction in wheat using a structural equation model and chromosome substitution lines. Crop Science, 2007, 47(2): 477-484.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[5] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[13] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[14] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[15] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!