Scientia Agricultura Sinica ›› 2013, Vol. 46 ›› Issue (1): 146-153.doi: 10.3864/j.issn.0578-1752.2013.01.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

MicroRNAs in Ovaries of Goats (Capra hircus) Identified by Solexa Sequencing

 ZHANG  Xiao-Dong, LING  Ying-Hui, ZHANG  Yun-Hai, LI  Yun-Sheng, LIU  Ya, CAO  Hong-Guo, ZHANG  Zi-Jun, YIN  Zong-Jun, DING  Jian-Ping, ZHANG  Xiao-Rong   

  1. College of Animal Science and Technology, Anhui Agricultural University/Anhui Key Laboratory of Local Animal Genetic Resources Conservation and Biobreeding, Hefei 230036
  • Received:2012-06-26 Online:2013-01-01 Published:2012-07-27

Abstract: 【Objective】 Characterization of microRNA expression in hircine ovary tissues was studied, with the purposes of providing basic information for further studies of relationships between specific miRNAs and hircine reproduction such as folliculogenesis and sex hormone secretion. 【Method】 The small RNAs isolated from total RNA of ovary tissues were sequenced by Solexa and then bioinformatics analysis were perfomed. Meanwhile, the expression of selected miRNAs was validated by q-PCR. 【Result】Sequence analysis indicated that 508 ovary miRNAs and 19 corresponding miRNA*s were identified which are conservative in evolution of mammals (sheep, bovine, swine, horse, dog). The expression of 8 selected miRNAs in ovary tissues obtained by q-PCR was in agreement with Solexa sequencing results. 【Conclusion】 The expression profiling of miRNAs, which are abundant and differentially expressed in hircine ovary tissues, was constructed successfully.

Key words: miRNA , Solexa , ovary , Anhui White goat

[1]Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006): 350-355.

[2]Esau C, Kang X, Peralta E, Hanson E, Marcusson E G, Ravichandran L V, Sun Y, Koo S, Perera R J, Jain R, Dean N M, Freier S M, Bennett C F, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. The Journal of Biological Chemistry, 2004, 279(50): 52361-52365.

[3]Inoue K. MicroRNA function in animal development. FEBS Letter, 2005, 579(26): 5911-5912.

[4]Baley J, Li J. MicroRNAs and ovarian function. Journal of Ovarian Research, 2012, 5: 8-14.

[5]郭  婧, 董旻岳. 微小RNA和生殖. 国际生殖健康/计划生育杂志, 2010, 29(1): 11-14.

Guo J, Dong M Y. MicroRNA and reproduction. Journal of Infernational Reproductive Health/Family Planning, 2010, 29(1): 11-14. (in Chinese)

[6]俞焙秦, 刘炳亚. miRNA的生物学特性和功能. 上海交通大学学报: 医学版, 2007, 27(5): 621-623.

Yu B Q, Liu B Y. Biological character and function of miRNA. Journal of Shanghai Jiaotong University: Medical Science, 2007, 27(5): 621-623. (in Chinese)

[7]Cutting A D, Bannister S C, Doran T J, Sinclair A H, Tizard M V, Smith C A. The potential role of microRNAs in regulating gonadal sex differentiation in the chicken embryo. Chromosome Research, 2012, 20(1): 201-213.

[8]Otsuka M, Zheng M, Hayashi M, Lee J D, Yoshino O, Lin S, Han J. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. The Journal of Clinical Investigation, 2008, 118(5): 1944-1954.

[9]Ahn H W, Morin R D, Zhao H, Harris R A, Coarfa C, Chen Z J, Milosavljevic A, Marra M A, Rajkovic A. MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Molecular Human Reproduction, 2010, 16(7): 463-471.

[10]Huang J, Ju Z, Li Q, Hou Q, Wang C, Li J, Li R, Wang L, Sun T, Hang S, Gao Y, Hou M, Zhong J. Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle. International Journal of Biological Sciences, 2011, 7(7): 1016-1026.

[11]Deo A, Carlsson J, Lindlof A. How to choose a normalization strategy for miRNA quantitative real-time (qPCR) arrays. Journal of Bioinformatics and Computational Biology, 2011, 9(6): 795-812.

[12]朱芷葳, 贺俊平, 程志学, 王海东, 李鹏飞, 乔德瑞, 董常生. microRNA在成年羊驼皮肤组织中的表达. 畜牧兽医学报, 2010, 41(10): 1342-1345.

Zhu Z W, He J P, Cheng Z X, Wang H D, Li P F, Qiao D R, Dong C S. microRNA Expression in adut alpaca skin. Acta Veterinaria et Zootechnica Sinica, 2010, 41(10): 1342-1345. (in Chinese)

[13]习欠云, 周莲莲, 李虹仪, 韩东, 束刚, 王松波, 高萍, 朱晓彤, 王修启, 江青艳, 张永亮. 不同品种猪肌肉组织miR-1和miR-133基因的表达分析. 畜牧兽医学报, 2012, 43(6): 843-848.

Xi Q Y, Zhou L L, Li H Y, Han D, Shu G, Wang S B, Gao P, Zhu X T, Wang X Q, Jiang Q Y, Zhang Y L. The expression analysis of miR-1 and miR-133 in longissimus dorsi muscle from different pig breeds. Acta Veterinaria et Zootechnica Sinica, 2012, 43(6): 843-848. (in Chinese)

[14]Amoah E A, Gelaye S. Biotechnological advances in goat reproduction. Journal of Animal Science, 1997, 75(2): 578-585.

[15]Zhang C Y, Chen S L, Li X, Xu D Q, Zhang Y, Yang L G. Genetic and phenotypic parameter estimates for reproduction traits in the Boer dam. Livestock Science, 2009, 125(1): 60-65.

[16]Leboeuf B, Delgadillo J A, Manfredi E, Piacere A, Clement V, Martin P, Pellicer M, Boue P, de Cremoux R. Management of goat reproduction and insemination for genetic improvement in France. Reproduction in Domestic Animals, 2008, 43(Suppl. 2): 379-385.

[17]Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 2011, 39: D152-D157.

[18]Wei Y, Chen S, Yang P, Ma Z, Kang L. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biology, 2009, 10(1): R6.

[19]Fu Y, Shi Z, Wu M, Zhang J, Jia L, Chen X. Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus). PloS One, 2011, 6(7): e22957.

[20]Hsieh M, Johnson M A, Greenberg N M, Richards J S. Regulated expression of Wnts and frizzleds at specific stages of follicular development in the rodent ovary. Endocrinology, 2002, 143(3): 898-908.

[21]Ricken A, Lochhead P, Kontogiannea M, Farookhi R. Wnt signaling in the ovary: identification and compartmentalized expression of wnt-2, wnt-2b, and frizzled-4 mRNAs. Endocrinology, 2002, 143(7): 2741-2749.

[22]Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochemical and Biophysical Research Communications, 2008, 376(4): 728-732.

[23]Wang T, Li M, Guan J, Li P, Wang H, Guo Y, Shuai S, Li X. MicroRNAs miR-27a and miR-143 regulate porcine adipocyte lipid metabolism. International Journal of Molecular Sciences, 2011, 12(11): 7950-7959.

[24]Yi C, Xie W D, Li F, Lü Q, He J, Wu J, Gu D, Xu N, Zhang Y. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Letters, 2011, 585(20): 3303-3309.

[25]Carletti M Z, Fiedler S D, Christenson L K. MicroRNA 21 blocks apoptosis in mouse periovulatory granulosa cells. Biology of Reproduction, 2010, 83(2): 286-295.

[26]Fu T Y, Lin C T, Tang P C. Steroid hormone-regulated let-7b mediates cell proliferation and basigin expression in the mouse endometrium. The Journal of Reproduction and Development, 2011, 57(5): 627-635.

[27]Saleh A D, Savage J E, Cao L, Soule B P, Ly D, DeGraff W, Harris C C, Mitchell J B, Simone N L. Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PloS One, 2011, 6(10): e24429.

[28]Roush S, Slack F J. The let-7 family of microRNAs. Trends in Cell Biology, 2008, 18(10): 505-516.

[29]Miles J R, McDaneld T G, Wiedmann R T, Cushman R A, Echternkamp S E, Vallet J L, Smith T P. MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science, 2012, 130(1/2): 16-26.
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] LI LiYing,HE YingTing,ZHONG YuYi,ZHOU XiaoFeng,ZHANG Hao,YUAN XiaoLong,LI JiaQi,CHEN ZanMou. CTNNB1 Regulates the Function of Porcine Ovarian Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(15): 3050-3061.
[3] ZHANG Jing,ZHANG JiYue,YUE YongQi,ZHAO Dan,FAN YiLing,MA Yan,XIONG Yan,XIONG XianRong,ZI XiangDong,LI Jian,YANG LiXue. LKB1 Regulates Steroids Synthesis Related Genes Expression in Bovine Granulosa Cells [J]. Scientia Agricultura Sinica, 2022, 55(10): 2057-2066.
[4] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[5] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[6] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[7] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[8] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[9] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[10] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[11] ZHU JingJing,ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai. Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway [J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179.
[12] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[13] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
[14] ZOU ShuangXia,JIN ChengYan,BAO JianJun,WANG Yue,CHEN WeiHao,WU TianYi,WANG LiHong,LÜ XiaoYang,GAO Wen,WANG BuZhong,ZHU GuoQiang,DAI GuoJun,SHI DongFang,SUN Wei. Differential circRNA Analysis in the Spleen of Hu-sheep Lambs Infected with F17 Escherichia coli [J]. Scientia Agricultura Sinica, 2019, 52(6): 1090-1101.
[15] LI WenYang,LIU Yuan,WU XianFeng,GAO ChengFang,HUANG QinLou. Transcriptome Analysis of Differentially Gene Expression Associated with Ovary Tissue During the Follicular Stage in Fuqing Goat and Nubian Black Goat [J]. Scientia Agricultura Sinica, 2019, 52(12): 2171-2182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!