Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (20): 4205-4215.doi: 10.3864/j.issn.0578-1752.2012.20.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Research on Vegetation Response to Temperature and Precipitation in Loess Plateau

 ZHANG  Chong, REN  Zhi-Yuan, LI  Xiao-Yan   

  1. 1.陕西师范大学旅游与环境学院,西安 710062
    2.陕西理工学院历史文化与旅游学院,陕西汉中723000
  • Received:2012-03-09 Online:2012-10-15 Published:2012-05-10

Abstract: 【Objective】The vegetation response to temperature and precipitation in Loess Plateau was studied.【Method】EOF (Empirical Orthogonal Functions) and SVD (Singular Value Decomposition) were applied to analyze the temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation, and to distinguish the spatio-temporal correlation between vegetation index and climate factors.【Result】The conditions for vegetation cover in southeast region of Loess Plateau were the best. More precipitation will be favourable to the vegetation cover, including the hydrological effect of Yellow River, but the temperature higher than one threshold value will be less good for plants in arid and semi-arid regions. Higher temperature made plants grow well where there is sufficient moisture in arid region. The vegetation cover has close relations to hydro-thermal condition in valley plain and basin valley. When there is this additional condition, the vegetation cover increases in hydro-thermal equilibrium region. There is a high level of correlation between vegetation cover and hydro-thermal condition, but more limiting factors.【Conclusion】The main limiting factors of temperature on the vegetation cover include land use, vegetation type, cropping system and landform. Loess Plateau is located in drought inland region, so precipitation has direct influence on vegetation cover. Plant growth depends on precipitation in desert zone and non-farming areas. The correlation between vegetation and precipitation is more complicated under irrigation conditions and so on in crop field.

Key words: Loess Plateau, vegetation cover, climate changes, response

[1]Xin Z B, Xu J X, Zheng W. Spatio-temporal variations of vegetation cover on the Chinese Loess Plateau (1981―2006): Impacts of climate changes and human activities. Science in China Series D: Earth Sciences, 2008, 51(1): 67-78.

[2]Salim H A, Chen X L, Gong J Y. Analysis of Sudan vegetation dynamics using NOAA–AVHRR NDVI data from 1982–1993. Asian Journal of Earth Sciences, 2008, 1(1): 1-15.

[3]Schimel D, Melillo J, Tian H. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 2000, 287: 2004-2006.

[4]Albani M, Medvigy D, Hurtt G C, Moorcroft P R. The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Global Change Biology, 2006, 12(12): 2370-2390.

[5]Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucher C J, Myneni R B, Running S W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300: 1560-1563.

[6]Fang J Y, Piao S L, He J S, Ma W H. Increasing terrestrial vegetation activity in China, 1982–1999. Science in China: Series C Life Science, 2004, 47: 229-240.

[7]Wang K, Li Z Q, Cribb M. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment, 2006, 102(3/4): 293-305.

[8]Pettorelli N, Vik J O, Atle Mysterud A, Gaillard J M, Tucker C J, Stenseth N C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 2005, 20(9): 503-510.

[9]Wardlow B D, Egbert S L. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sensing of Environment, 2008, 112(3): 1096-1116.

[10]Ichii K, Kawabata A, Yamaguchi Y. Global correlation analysis for NDVI and climatic variables and NDVI trends:1982–1990. International Journal of Remote Sensing, 2002, 23: 3873-3878.

[11]Wang J, Rich P M, Price K P. Temporal response of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 2003, 24: 2345-2364.

[12]赵茂盛, 符淙斌, 延晓冬, 温  刚. 应用遥感数据研究中国植被生态系统与气候的关系. 地理学报, 2001, 56(3): 287-296.

Zhao M S, Fu C B, Yan X D, Wen G. Study on the relationship between different ecosystems and climate in China using NOAA/ AVHRR data. Acta Geographica Sinica, 2001, 56(3): 287-296. (in Chinese)

[13]李晓兵, 史培军. 中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析. 植物生态学报, 2000, 24(3): 379-382.

Li X B, Shi P J. Sensitivity analysis of variation in NDVI, temperature and precipitation in typical vegetation types across China. Acta Phytoecologica Sinica, 2000, 24(3): 379-382. (in Chinese)

[14]陈云浩, 李晓兵, 史培军. 1983~1992年中国陆地NDVI变化的气候因子驱动分析. 植物生态学报, 2001, 25(6): 716-720.

Chen Y H, Li X B, Shi P J. Variation in NDVI driven by climate factors across China, 1983–1992. Acta Phytoecologica Sinica, 2001, 25(6): 716-720. (in Chinese)

[15]徐兴奎, 林朝晖, 薛 峰, 曾庆存. 气象因子与地表植被生长相关性分析. 生态学报, 2003, 23(2): 221-230.

Xu X K, Lin Z H, Xue F, Zhen Q C. Correlation analysis between meteorological factors and the ratio of vegetation cover. Acta Ecologica Sinica, 2003, 23(2): 221-230. (in Chinese)

[16]Jiang W G, Hou P, Zhu X H, Cao G Z, Liu X M, Cao R Y. Analysis of vegetation response to rainfall with satellite images in Dongting Lake. Journal of Geographical Sciences, 2011, 21(1): 135-149.

[17]Jia S F, Zhu W B, Lü A F, Yan T T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing of Environment, 2011, 115(12): 3069-3079.

[18]Fensholt R, Rasmussen K. Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sensing of Environment, 2011, 115(2): 438-451.

[19]杜子涛, 占玉林, 王长耀. 基于NDVI序列影像的植被覆盖变化研究. 遥感技术与应用, 2008, 23(1): 47-51.

Du Z T, Zhan Y L, Wang C Y. Study on vegetation-cover changes based on NDVI serial images. Remote Sensing Technology and Application, 2008, 23(1): 47-51. (in Chinese)

[20]李杭燕, 颉耀文, 马明国. 时序NDVI数据集重建方法评价与实例研究. 遥感技术与应用, 2009, 24(5): 596-602.

Li H Y, Xie Y W, Ma M G. Reconstruction of temporal NDVI dataset: Evaluation and case study. Remote Sensing Technology and Application, 2009, 24(5): 596-602. (in Chinese)

[21]王桂钢, 周可法, 孙  莉, 秦艳芳, 李雪梅. 近10a新疆地区植被动态与R/S分析. 遥感技术与应用, 2010, 25(1): 84-90.

Wang G G, Zhou K F, Sun L, Qing Y F, Li X M. Study on the vegetation dynamic change and R/S analysis in the past ten years in Xinjiang. Remote Sensing Technology and Application, 2010, 25(1): 84-90. (in Chinese)

[22]黄嘉佑. 气象统计分析与预报方法. 北京: 气象出版社, 2000.

Huang J Y. Statistic Analysis and Forecast Methods in Meteorology. Beijing: China Meteorological Press, 2000. (in Chinese)

[23]魏凤英. 现代气候统计诊断与预测技术(2版). 北京: 气象出版 社, 2007.

Wei F Y. Statistical Diagnosis and Forecasting Techniques of Modern Climate(2nd Edition). Beijing: China Meteorological Press, 2007. (in Chinese)

[24]North G R, Bell T L, Cahalan R F. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 1982, 110: 699-706.

[25]Cattell R B. The scree test for the number of factors. Multivariate Behavioral Research, 1966, 1: 245-276.

[26]信忠保, 许炯心, 郑  伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响. 中国科学D辑: 地球科学, 2007, 37(11): 1504-1514.

Xin Z B, Xu J X, Zheng W. The influence of climate change and human activities on vegetation cover change on the Loess Plateau. Science in China (Series D:Earth Sciences), 2007, 37(11): 1504-1514.

[27] 张  岩, 张清春, 刘宝元. 降水变化对陕北黄土高原植被覆盖度和高度的影响. 地球科学进展, 2002, 17(2): 268-272.

Zhang Y, Zhang Q C, Liu B Y. Study on vegetative coverage and height variation in Northern Loess Plateau. Advance in Earth Sciences, 2002, 17(2): 268-272. (in Chinese)

[28]李小燕, 任志远, 张  翀. 陕南气温变化的时空分布. 资源科学, 2012, 34(5): 927-932.

Li X Y, Ren Z Y, Zhang C. Spatial and temporal distribution of temperature changes in Southern Shaanxi. Resources Science, 2012, 34(5): 927-932. (in Chinese)
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] HOU JiangJiang,WANG JinZhou,SUN Ping,ZHU WenYan,XU Jing,LU ChangAi. Spatiotemporal Patterns in Nitrogen Response Efficiency of Aboveground Productivity Across China’s Grasslands [J]. Scientia Agricultura Sinica, 2022, 55(9): 1811-1821.
[3] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[4] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[7] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[8] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[9] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[10] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[11] XiaoFeng LU,GuoDong DU,Jing SHAO,JingRu ZHANG,HaiLong SUN. Physiological Response of Mitochondrial Function of Strawberry Roots to Exogenous Phenolic Acid [J]. Scientia Agricultura Sinica, 2021, 54(5): 1029-1042.
[12] ZHAO DongMin,HUANG XinMei,ZHANG LiJiao,LIU QingTao,YANG Jing,HAN KaiKai,LIU YuZhuo,LI Yin. The Induction of Unfolded Protein Response in Tembusu Virus Infected Ducklings [J]. Scientia Agricultura Sinica, 2021, 54(4): 855-863.
[13] LI Xiang,ZHANG XiaoJiao,XIAO Chun,DONG WenXia. Electroantennogram Responses of Phthorimaea operculella of Different Sexes and Mating States to Potato Volatiles [J]. Scientia Agricultura Sinica, 2021, 54(3): 547-555.
[14] LÜ ShiKai, MA XiaoLong, ZHANG Min, DENG PingChuan, CHEN ChunHuan, ZHANG Hong, LIU XinLun, JI WanQuan. Post-transcriptional Regulation of TaNAC Genes by Alternative Splicing and MicroRNA in Common Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4709-4727.
[15] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!