Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (19): 3988-3995.doi: 10.3864/j.issn.0578-1752.2012.19.010

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Bemisia tabaci (Homoptera: Aleyrodidae) Biotype B Infestation on Photosystem II in Nicotiana tabacum

 LI  Qing-Liang, TAN  Wei, XUE  Ming   

  1. 1.山东农业大学植物保护学院,山东泰安 271018
    2.山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271018
  • Received:2012-01-06 Online:2012-10-01 Published:2012-04-20

Abstract: 【Objective】The objective of this study is to define the effects of Bemisia tabaci biotype B infestation on the photosystem II (PSII) in tobacco, and to reveal the mechanism of B. tabaci infestation affecting photosynthesis of host plant. 【Method】Effects of B. tabaci infestation on the PSII performance in damaged leaves and systemic leaves of tobacco were investigated by measuring chlorophyll fluorescence transients and analyzing the related parameters using JIP-test.【Result】B. tabaci infestation significantly increased the maximal photochemical efficiency of primary photochemistry (φpo) and performance index on absorption basis (PIABS) both in local and systemic leaves (P<0.05), indicating that the original photochemical reaction was greatly damaged. Photosynthetic electron transport was inhibited and oxygen-evolving complexes (OEC) were severely damaged. B. tabaci infestation increased the energy absorption per active reaction centers (ABS/RC) and the energy dissipation per active reaction centers (DIo/RC) increase while decreased energy trapping per active reaction centers (TRo/RC) in systemic leaves. In damaged leaves, DIo/RC increased and TRo/RC decreased, however, the ABC/RC was not affected. B. tabaci infestation reduced the density of active reaction centers per excited cross-section (RC/CS) both in damaged and systemic leaves (P<0.05) while increased the closure degree of the PSⅡreaction centers by 69.83% and 142.58% (P<0.05), respectively, in damaged and systemic leaves.【Conclusion】B. tabaci infestation damaged the PSII of tobacco leaves. The reaction centers were damaged and the electron transporting was inhibited. The inhibited points of the electron transporting included the OEC and the electron transporting from QA to QB. Energy flux of PSII was also affected by the B. tabaci infestation. The damage on PSII caused by B. tabaci in tobacco leaves was systematically conductive.

Key words: tobacco, Bemisia tabaci biotype B, photosystem II, oxygen-evolving complexes, electron transporting

[1]Inbar M, Gerling D. Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annual Review of Entomology, 2008, 53: 431-448.

[2]Jiang C D, Gao H Y, Zou Q. Characteristics of photosynthetic apparatus in Mn-starved maize leaves. Photosynthetica, 2002, 40(2): 209-213.

[3]Verhoeven A S, Adams W W, Demmig-Adams B, Croce R, Bassi R. Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. Plant Physiology, 1999, 120(3): 727-737.

[4]部建雯, 姚  广, 高辉远, 贾裕娇, 张立涛, 程丹丹, 王  鑫. 核盘菌 (Sclerotinia sclerotiorum (lib.) de bary) 侵染抑制黄瓜光合作用的机理. 植物病理学报, 2009, 39(6): 613-621.

Bu J W, Yao G, Gao H Y, Jia Y J, Zhang L T, Cheng D D, Wang X. Inhibition mechanism of photosynthesis in cucumber leaves infected by Sclerotinia sclerotiorum (Lib.) de Bary. Acta Phytopathologica Sinica, 2009, 39(6): 613-621. (in Chinese)

[5]Burd J D, Elliott N C. Changes in chlorophyll a fluorescence induction kinetics in cereals infested with Russian wheat aphid (Homopetra: Aphididea). Journal of Economic Entomology, 1996, 89(5): 1332-1337.

[6]Franzen L D, Gutsche A R, Heng-Moss T M, Higley L G, Macedo T B. Physiological responses of wheat and barley to Russian wheat aphid, Diuraphis noxia (Mordvilko) and bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Arthropod-Plant Interactions, 2008, 2(4): 227-235.

[7]Buntin G D, Gilbertz D A, Oetting R D. Chlorophyll loss and gas exchange in tomato leaves after feeding injury by Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 1993, 86(2): 517-522.

[8]Lin T B, Schwartz A, Saranga Y. Photosynthesis and productivity of cotton under silverleaf whitefly stress. Crop Science, 1999, 39(1): 174-184.

[9]Lin T B, Wolf S, Schwartz A, Saranga Y. Silverleaf whitefly stress impairs sugar export from cotton source leaves. Physiologia Plantarum, 2000, 109(3): 291-297.

[10]王承香, 薛  明, 毕明娟, 李庆亮, 胡海燕. B型烟粉虱取食诱导烟草对烟蚜防御反应的时间效应. 昆虫学报, 2010, 53(3): 314-322.

Wang C X, Xue M, Bi M J, Li Q L, Hu H Y. Temporal effect of tobacco defense responses to Myzus persicae (Sulzer) (Homoptera: Aphididae) induced by Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) B biotype. Acta Entomologica Sinica, 2010, 53(3): 314-322. (in Chinese)

[11]李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31(6): 559-566.

Li P M, Gao H Y, Strasser R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 2005, 31(6): 559-566. (in Chinese)

[12]Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 1995, 61(1): 32-42.

[13]Tan W, Meng Q, Brestic M, Olsovska K, Yang X. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 2011, 168(17): 2063-2071.

[14]Van Kooten O, Snel J F H. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 1990, 25(3): 147-150.

[15]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis-the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349.

[16]Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000, 51(345): 659-668.

[17]Jiang C D, Gao H Y, Zou Q. Changes of donor and acceptor side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetica, 2003, 41 (2): 267-271.

[18]Christen D, Schönmann S, Jermini M, Strasser R J, Défago G. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environmental and Experimental Botany, 2007, 60(3): 504-514.

[19]Burd J D, Burton R L. Characterization of plant damage caused by Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology, 1992, 85(5): 2017-2022.

[20]Strasser R J, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples//Yunus M, Pathre U, Mohanty P. Probing Photosynthesis: Mechanisms, Regulation and Adaptation. London: Taylor and Francis, 2000: 445-483.

[21]Strasser R J, Tsimilli-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient//Papageorgiou G C, Govindjee. Chlorophyll a Fluorescence: A Signature of Photosynthesis. Berlin: Sprinber, 2005: 321-362.

[22]Strasser B J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 1997, 52(2): 147-155.

[23]Jia Y J, Cheng D D, Wang W B, Gao H Y, Liu A X, Li X M, Meng Q W. Different enhancement of senescence induced by metabolic products of Alternaria alternata in tobacco leaves of different ages. Physiologia Plantarum, 2010, 138(2): 164-175.

[24]Bounfour M, Tanigoshi L K, Chen C, Cameron S J, Klauer S. Chlorophyll content and chlorophyll fluorescence in red raspberry leaves infested with Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Environmental Entomology, 2002, 31(2): 215-220.

[25]Haldimann P, Strasser R J. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynthesis Research, 1999, 62(1): 67-83.

[26]Strasser R J, Stirbet A D. Estimation of the energetic connectivity of ps II centres in plants using the fluorescence rise O-J-I-P: Fitting of experimental data to three different ps II models. Mathematics and Computers in Simulation, 2001, 56(4/5): 451-461.

[27]伍贤进, 任宝璋. 烟草的光合作用. 农业与技术, 1997(5): 7-10.

Wu X J, Ren B Z. The photosynthesis of tobacco. Agriculture & Technology, 1997(5): 7-10. (in Chinese)

[28]王少先, 李再军, 王雪云, 夏石头, 王  勇, 匡逢春, 萧浪涛, 周冀衡. 不同烟草品种光合特性比较研究初报. 中国农学通报, 2005, 21(5): 245-252.

Wang S X, Li Z J, Wang X Y, Xia S T, Wang Y, Kuang F C, Xiao L T, Zhou J H. Preliminary comparative research of the photosynthetic characteristics in tobacco plants of different varieties. Chinese Agricultural Science Bulletin, 2005, 21(5): 245-252. (in Chinese)

[29]邵惠芳, 胡亚杰, 焦桂珍, 吴  军. 转化酶种类与生理功能及对烟草品质的影响. 中国农学通报, 2007, 23(5): 318-341.

Shao H F, Hu Y J, Jiao G Z, Wu J. The kinds and physiological function of invertase and effects on tobacco quality. Chinese Agricultural Science Bulletin, 2007, 23(5): 318-341. (in Chinese)
[1] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[4] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[5] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[6] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[7] WEI YanXia,LI ZhuoRan,ZHANG Bin,YUAN YuJin,YU WeiWei,CHANG RuoKui,WANG YuanHong. Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02 [J]. Scientia Agricultura Sinica, 2021, 54(16): 3451-3460.
[8] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[9] HaiYan JIA,LiYun SONG,Xiang XU,Yi XIE,ChaoQun ZHANG,TianBo LIU,CunXiao ZHAO,LiLi SHEN,Jie WANG,Ying LI,FengLong WANG,JinGuang YANG. Differential Expression of LncRNAs in Nicotiana tabacum var. Samsun NN Infected by TMV at Different Temperatures [J]. Scientia Agricultura Sinica, 2020, 53(7): 1381-1396.
[10] XIANG ShunYu,WANG Jing,XIE ZhongYu,SHI Huan,CAO Zhe,JIANG Long,MA XiaoZhou,WANG DaiBin,ZHANG Shuai,HUANG Jin,SUN XianChao. Preparation of A Novel Silver Nanoparticle and Its Antifungal Mechanism Against Alternaria alternata [J]. Scientia Agricultura Sinica, 2020, 53(14): 2885-2896.
[11] LI FeiHong,HOU YingJun,LI XueHan,YU XinYi,QU ShenChun. Cloning and Function Analysis of Apple Gibberellin Oxidase Gene MdGA2ox8 [J]. Scientia Agricultura Sinica, 2018, 51(22): 4339-4351.
[12] PENG HaoRan, PAN Qi, WEI ZhouLing, PU YunDan, ZHANG YongZhi, WU GenTu, QING Ling, SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Tomato Resistance-Related Gene SlHin1 [J]. Scientia Agricultura Sinica, 2017, 50(7): 1242-1251.
[13] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
[14] ZHAO LeiLin, FAN Xin, NIE Xing, LIANG ChengZhen, ZHANG Rui, SUN GuoQing, MENG ZhiGang, LIN Min, WANG Yuan, GUO SanDui. Salt and Drought Tolerance in Heterologous-Expression of irrE Transgenic Tobacco [J]. Scientia Agricultura Sinica, 2017, 50(20): 3860-3870.
[15] YANG Zhan-wu, YANG Jun, ZHANG Yan, WU Jin-hua, LI Zhi-kun, WANG Xing-fen, WU Li-qiang, ZHANG Gui-yin, MA Zhi-ying. Subcellular Localization and Verticillium Wilt Resistance Analysis of Cotton GbRvd in Overexpressed Tobacco [J]. Scientia Agricultura Sinica, 2016, 49(21): 4065-4073.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!