Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (13): 2718-2727.doi: 10.3864/j.issn.0578-1752.2012.13.016

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Estimation and Regression Models of Methane Emissions from Sheep

 ZHAO  Yi-Guang, DIAO  Qi-Yu, LIU  Jie, JIANG  Cheng-Gang, DENG  Kai-Dong, TU  Yan   

  1. 中国农业科学院饲料研究所/农业部饲料生物技术重点实验室,北京 100081
  • Received:2011-11-02 Online:2012-07-01 Published:2012-01-31

Abstract: 【Objective】 This trial was designed to study the effects of dietary nutrients and their digestibility on rumen methane (CH4) emissions from sheep and develop regression models. 【Method】 Eight adult crossbreed rams (Dorper (♂) ×Small Tail Han sheep (♀)) with the body weight of (50.37±1.13) kg were fed 8 total mixed rations with different NDF content of 51.83%, 50.47%, 44.58%, 42.34%, 38.20%, 35.43%, 30.10% and 27.03%, respectively. The experiment design was 8×4 incomplete Latin square which lasted for 4 periods and each period lasted for 16 d. CH4 was measured by sable open-circuit respiration calorimetry system with 3 sheep once and digestive trials were conducted by total feces collection method during the last 8 d of each period. 【Result】 CH4 per kg digestive organic matter (L•kg-1 DOM) of 8 diets was 48.80, 46.98, 45.38, 41.34, 35.44, 34.66, 33.73 and 37.83, respectively. Methane regressed to NDF, ADF, nutrient intake and digestive nutrients were CH4E/DE (%)=0.14688DNDF/DOM (%)+5.47643 (R2=0.9084, P=0.0003), CH4 (L•kg-1 DOM)=0.14411DADF(g)+23.69940 (R2=0.8367, P=0.0015), CH4 (L•kg-1 DOM)=-0.22260OMI (g)+0.15234CPI (g)+0.06465NDFI (g)-0.60549EEI (g)+218.23715 (R2=0.9786, P=0.0077) and CH4 (L•kg-1 DOM)=0.09722DCP (g)+0.12079DNDF (g)-0.08355DADF (g)-1.71035DEE (g)+47.85414 (R2=0.9776, P=0.0083), respectively.【Conclusion】CH4 (L•kg-1 DOM), CH4E/GE and CH4E/DE were affected by the ratio of forage to concentrate (F﹕C) or dietary roughage content. In the linear regression models, NDF and ADF were more reliable than other nutrients to estimate methane emissions with higher precision. Compared with the linear regression models, the multiple regression models clearly provided a higher accuracy and a stronger correlation.

Key words: sheep, respiration calorimetry, methane, nutrients, regression models

[1]李胜利, 金  鑫, 范学珊, 黄文明, 曹志军. 反刍动物生产与碳减排措施. 动物营养学报, 2010, 22(1): 2-9.

Li S L, Jin X, Fan X S, Huang W M, Cao Z J. Ruminant production and carbon emission reduction measures. Chinese Journal of Animal Nutrition, 2010, 22(1): 2-9. (in Chinese)

[2]Moe P W, Tyrrell H F. Methane production in dairy cows. Journal of Dairy Science, 1979, 62(6): 1583-1586.

[3]韩继福, 冯仰廉, 张晓明, 莫  放, 赵广永, 杨雅芳. 阉牛不同日粮的纤维消化、瘤胃内VFA对甲烷产生量的影响. 中国兽医学报, 1997, 17(3): 278-280.

Han J F, Feng Y L, Zhang X M, Mo F, Zhao G Y, Yang Y F. Effects of fiber digestion and VFA in the rumen on the methane production in steers of different type of diets. Chinese Journal of Veterinary Science, 1997, 17(3): 278-280. (in Chinese)

[4]冯仰廉. 肉牛营养需要和饲养标准. 北京: 中国农业大学出版社, 2000: 18.

Feng Y L. Nutrient Requirements and Feeding Standards of Beef Cattle. Beijing: Chinese Agricultural University Press, 2000: 18. (in Chinese)

[5]Kirchgessner M, Windisch W, Mueller H L, Kreuzer M. Release of methane and of carbon dioxide by dairy cattle. Agribiological Research, 1991, 44(2/3): 91-102.

[6]Jentsch W, Schweigel M, Weissbach F, Scholze H, Pitroff W, Derno F. Methane production in cattle calculated by the nutrient composition of the diet. Archives of Animal Nutrition, 2007, 61(1): 10-19.

[7]张丽英. 饲料分析及饲料质量检测技术. 第二版. 北京: 中国农业大学出版社, 2003: 45-105.

Zhang L Y. Feed Analysis and Determining Technique. 2nd ed. Beijing: Chinese Agricultural University Press, 2003: 45-105. (in Chinese)

[8]熊本海, 庞之洪, 罗清尧. 饲料数据描述规范及评价进展. 北京: 中国农业科学技术出版社, 2008: 160.

Xiong B H, Pang Z H, Luo Q Y. Descriptors of Attribution Data on Feedstuffs and Their Evaluation Advances. Beijing: China Agricultural Science and Technology Press, 2008: 160. (in Chinese)

[9]van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74: 3583-3597.

[10]周  怿, 刁其玉. 反刍动物瘤胃甲烷气体生成的调控. 草食家畜, 2008, 4: 21-24.

Zhou Y, Diao Q Y. Manipulation for the methane production in rumen. Grass-Feeding Livestock, 2008, 4: 21-24. (in Chinese)

[11]Lovett D, Lovell S, Stack L, Callan J, Finlay M, Conolly J, O’Mara F P . Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livestock Production Science, 2003, 84(2): 135-146.

[12]Lovett D K, Stack L J, Lovell S, Callan J, Flynn B, Hawkins M, O’Mara F P. Manipulating enteric methane emissions and animal performance of late-lactation dairy cows through concentrate supplementation at pasture. Journal of Dairy Science, 2005, 88(8): 2836-2842.

[13]Hindrichsen I K, Wettstein H R, Machmüller A, Kreuzer M. Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agriculture, Ecosystems and Environment, 2006, 113: 150-161.

[14]樊  霞, 董红敏, 韩鲁佳, 黄光群. 肉牛甲烷排放影响因素的试验研究. 农业工程学报, 2006, 22(8): 179-183.

Fan X, Dong H M, Han L J, Huang G Q. Experimental study on the factors affecting methane emission of beef cattle. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(8): 179-183. (in Chinese)

[15]Johnson K A, Johnson D E. Methane emissions from cattle. Journal of Animal Science, 1995, 73: 2483-2492.

[16]Aguerre M J, Wattiaux M A, Powell J M, Broderick G A, Arndt C. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. Journal of Dairy Science, 2011, 94(6): 3081-3093.

[17]游玉波. 肉牛甲烷排放测定与估算模型的研究[D]. 北京: 中国农业科学院, 2008: 38.

You Y B. Study on estimation and prediction models of methane emissions from beef cattle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008: 38. (in Chinese)

[18]娜仁花. 不同日粮对奶牛瘤胃甲烷及氮排放的影响研究[D]. 北京: 中国农业科学院, 2010: 3-6.

Na R H. Effects of diet composition on methane and nitrogen emissions from lactating cattle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010:3-6. (in Chinese)

[19]McAllister T A, Newbold C J. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 2008, 48(2): 7-13.

[20]Benchaar C, Rivest J, Pomar C, Chiquette J. Prediction of methane production from dairy cows using existing mechanistic models and regression equations. Journal of Animal Science, 1998, 76: 617-627.

[21]Mills J, Kebreab E, Yates C M, Crompton L A, Caunnell S B, Dhanoa M S, Agnew R E, France J. Alternative approaches to predicting methane emissions from dairy cows. Journal of Animal Science, 2003, 81: 3141-3150.

[22]Machmüller A. Medium-chain fatty acids and their potential to reduce methanogenesis in domestic ruminants. Agriculture, Ecosystems and Environment, 2006, 112(2/3): 107-114. 

[23]Beauchemin K A, McGinn S M, Benchaar C, Holtshausen L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: effects on methane production, rumen fermentation, and milk production. Journal of Dairy Science, 2009, 92(5): 2118-2127.

[24]Boeckaert C, Mestdagh J, Vlaeminck B, Clayton D, Fievez V. Micro-algae as potent rumen methane inhibitors and modifiers of rumen lipolysis and biohydrogenation of linoleic and linolenic acid. International Congress Series, 2006, 1293: 184-188.

[25]Grainger C, Beauchemin K A. Can enteric methane emissions from ruminants be lowered without lowering their production? Animal Feed Science and Technology, 2011, 166: 308-320.

[26]Mao H L, Wang J K, Zhou Y Y, Liu J X. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 2010, 129(1/3): 56-62.
[1] LIU YuFang,CHEN YuLin,ZHOU ZuYang,CHU MingXing. miR-221-3p Regulates Ovarian Granulosa Cells Apoptosis by Targeting BCL2L11 in Small-Tail Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(9): 1868-1876.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] SONG ShuZhen, GAO LiangShuang, LI Hong, GONG XuYin, LIU LiShan, WEI YuBing. Effects of Feeding Levels on Muscle Tissue Structure and Muscle Fiber Composition Related Genes in Sheep [J]. Scientia Agricultura Sinica, 2022, 55(21): 4304-4314.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[7] KE Na,HAO ZhiYun,WANG JianQing,ZHEN HuiMin,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin,ZHAO ZhiDong,HUANG ZhaoChun,LIANG WeiWei,WANG JiQing. The miR-221 Inhibits the Viability and Proliferation of Ovine Mammary Epithelial Cells by Targeting IRS1 [J]. Scientia Agricultura Sinica, 2022, 55(10): 2047-2056.
[8] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[9] MI XiaoTian,SHI Lei,HE Gang,WANG ZhaoHui. Fertilizer Reduction Potential and Economic Benefits of Crop Production for Smallholder Farmers in Shaanxi Province [J]. Scientia Agricultura Sinica, 2021, 54(20): 4370-4384.
[10] WANG Qian,LI Zheng,ZHAO ShanShan,QIE MengJie,ZHANG JiuKai,WANG MingLin,GUO Jun,ZHAO Yan. Application of Stable Isotope Technology in the Origin Traceability of Sheep [J]. Scientia Agricultura Sinica, 2021, 54(2): 392-399.
[11] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[12] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[13] WANG JiQing,HAO ZhiYun,SHEN JiYuan,KE Na,HUANG ZhaoChun,LIANG WeiWei,LUO YuZhu,HU Jiang,LIU Xiu,LI ShaoBin. Screening, Identification and Functional Analysis of Important LncRNAs for Lactation Traits in Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2021, 54(14): 3113-3123.
[14] ZHANG Wei,WANG ShiYin,GAO Li,YANG LiWei,DENG ShuangYi,LIU XiaoNa,SHI GuoQing,GAN ShangQuan. Investigation of miR-486 Target Genes in Skeletal Muscle of Bashbay Sheep in Different Development Periods [J]. Scientia Agricultura Sinica, 2021, 54(14): 3134-3148.
[15] LI RunTing,CHEN LongXin,ZHANG LiMeng,HE HaiYing,WANG Yong,YANG RuoChen,DUAN ChunHui,LIU YueQin,WANG YuQin,ZHANG YingJie. Transient Expression and the Effect on Proliferation and Apoptosis of Granule Cell Stimulating Factor in Ovarian Fibroblasts [J]. Scientia Agricultura Sinica, 2021, 54(11): 2434-2444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!