Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (11): 2260-2266.doi: 10.3864/j.issn.0578-1752.2012.11.015

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Stability of Endogenous Reference Genes in Green-Goose Tissues During Prelaying and Laying Periods 

 JI  Hong, WANG  Zhong-Wei, GUO  Jing-Ru, WANG  Jian-Fa, HE  Rong-He, YANG  Huan-Min   

  1. 1.黑龙江八一农垦大学动物科技学院,黑龙江大庆163319
    2.吉林大学畜牧兽医学院,长春130062
  • Received:2011-06-08 Online:2012-06-01 Published:2011-08-30

Abstract: 【Objective】 The mRNA expression levels of seven candidate reference genes in green-goose tissues during prelaying and laying periods were comparatively-analyzed. Finally the most appropriate reference genes and their numbers were screened in gene expression analysis of green-goose tissues.【Method】The expressions of candidate reference genes 28S rRNA, 18S rRNA, GAPDH, ACTB, HPRT1, SDH and TUB in prelaying and laying green-goose liver, kidney, heart, leg muscle and ovary were detected by qRT-PCR. Gene copy number was determined using absolute quantification. Then the expression stability of these genes was analysed by geNorm software.【Result】The results showed that stability of the seven reference genes from high to low was GAPDH=HRPT1 (0.195)>TUB (0.244)>28S rRNA (0.414)>18S rRNA (0.495)>ACTB (0.541)>SDH (0.610) during prelaying period and GAPDH=28S rRNA (0.128)>TUB (0.181)>ACTB (0.192)>SDH (0.221)>HRPT1 (0.316)>18S rRNA (0.362) during laying period by geNorm analysis. And V2/3 of pairwise variance analysis of 7 candidate reference genes were separately 0.084 and 0.069 during the 2 periods. The appropriate number of reference genes was 2. 【Conclusion】 These results suggest that GAPDH and HRPT1, GAPDH and 28S rRNA are suitable reference genes and could be used to normalize mRNA levels between different samples in green-goose tissues during prelaying and laying periods.

Key words: green-goose, reference gene, qRT-PCR, geNorm software, NormFinder software

[1]Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 2002, 29: 23-39.

[2]Ginzinger D G. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Experimental Hematology, 2002, 30: 503-512.

[3]Radonic A, Thulke S, Mackay I M, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 2004, 313 (4): 856-862.

[4]Dheda K, Huggett J F, Bustin S A, Johnson M A, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 2004, 37(1): 112-119.

[5]Thellin O, Zorzi W, Lakaye B, De B B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 1999, 75: 291- 295.

[6]Bionaz M, Loor J J. Dentification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiological Genomics, 2007, 29: 312-319.

[7]Mamo S, Gal A B, Bodo S, Dinnyes A. Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Developmental Biology, 2007, 7: 14-25.

[8]Schmittgen T D, Zakrajsek B A.Effect of experimental treatment on housekeep ing gene expression: validation by real-time,quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 2000, 46: 69-81.

[9]康  波. 籽鹅卵巢组织基因差异表达及产蛋相关基因定量的研究[D]. 长春: 吉林大学, 2009.

Kang B. Differential expression profiling and relative quantification of egg-laying genes in the ovaries of green geese[D]. Changchun: Jilin University, 2009. (in Chinese)

[10]Vandesompele J, de Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multipleinternal control genes. Genome Biology, 2002, 3(7): 1-11.

[11]Andersen C L, Jensen J L, Ørntoft T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon data sets. Cancer Research, 2004, 64: 5245-5250.

[12]Valente V, Teixeira S A, Neder L, Okamoto O K, ObaShinjo S M, Marie S K, Scrideli C A M. Selection of suitable housekeeping genes for expression analysis in glioblastoma using quantitative RT-PCR. BMC Molecular Biology, 2009, 10: 17-28.

[13]Beekman L, Tohver T, Dardari R, Léguillette R. Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease. BMC Molecular Biology, 2011, 12: 5-14.

[14]Maroufi A, BockstaeleE V, Loose M D. Validation of reference  genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Molecular Biology, 2010, 11: 15-26.

[15]Hiel M B V, Wielendaele P V, Temmerman L, Soest S V, Vuerinckx K, Huybrechts R, Broeck J V, Simonet G. Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Molecular Biology, 2009, 10: 56-65.

[16]Bustin S A, Mckay I A. The production of primary responsegene BRF1 inhibits the interaction between 14-3-3 proteins and cRaf-1 in the yeast trihybrid system. DNA and Cell Biology, 1999, 18(8): 653-661.

[17]Pan J, Xiang Q, Ball S. Use of a novel real-time quantitative reverse transcription-polymerase chain reaction method to study the effects of cytokines on cytochrome P450 mRNA expression in moues liver. Drug Metabolism and Disposition, 2000, 28(6): 709-713.

[18]Silver N, Cotroneo E, Proctor G, Samira O, Katherine P, Guy C. Selection of housekeeping genes for gene expression studies in the adult rat submandibular gland under normal, inflamed, atrophic and regenerative states. BMC Molecular Biology, 2008, 9: 64-78.

[19]Chen L R, Chao C H, Chen C F, Lee Y P, Chen Y L, Shiu Y L. Expression of 25 high egg production related transcripts that identi?ed from hypothalamus and pituitary gland in red-feather Taiwan country chickens. Animal Reproduction Science, 2007, 100: 172-185.

[20]Yen C F, Lin H W, Hsu J C, Lin C, Shen T F, Ding S T. The expression of pituitary gland genes in laying geese. Poultry Science, 2006, 85: 2265-2269.

[21]Shu G, Chen J, NI Y D, Zhou Y C, Zhao R Q. Isolatin and expression of novel exp ressed sequence tags (ESTs) from ovarian follicles of Shaoxing ducks. Acta Genetica Sinica, 2004, 31(10): 1095-1102.

[22]Scholz1 B, Kultima1 K, Mattsson A, Axelsson J, Brunström B, Halldin K, Stigson M, Dencker L. Sex-dependent gene expression in early brain development of chicken embryos. BMC Neuroscience, 2006, 7: 12-28.

[23]Ding S T, Yen C F, Wang P H, Lin H W, Hsu J C, Shen T F. The differential expression of hepatic genes between prelaying and laying geese. Poultry Science, 2007, 86: 1206-1212.

[24]Bogaert L, Mario V P, Cindy D B. Selection of a set of reliable reference genes for quantitative real-time PCR in normal equine skin and in equine sarcoids. BMC Biotechnology, 2006, 6: 24-30.

[25]Revillion F, Pawlowski V, Hornez L.Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. European Journal of Cancer, 2000, 36(8): 1038-1042.

[26]Vila M R, Nicolas A, Morote J. Increased glyceraldehyde-3- phosphate dehydrogenase expression in renal cell carcinoma identified by RNA-based, arbitrarily primed polymerase chain reaction. Cancer, 2000, 89(1): 152-164.

[27]Zhu G Z, Chang Y S, Zuo J, Dong X Y, Zhang M, Hu G X, Fang F D. Fudenine, a C-terminal truncated rat homologue ofmouse prominin, is blood glucose-regulated and can up-regulate the expression of GAPDH. Biochemical and Biophysical Research Communications, 2001, 281(4): 951-956.

[28]Yan H Z, Liou R F. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology, 2006, 43: 430-438.

[29]Filby A L, Tyler C R. Appropriate’housekeeping’genes for use in expression profiling the effects of environmental estrogens in fish. BMC Molecular Biology, 2007, 8: 10-22.

[30]Toegel S, Huang W, Piana C, Unger F M, Wirth M, Goldring M B, Gabor F, Viernstein H. Selection of reliable reference genes for qPCR studies on chondroprotective action. BMC Molecular Biology, 2007, 8: 13-22.

[31]Infante C, Matsuoka M P, Asensio E, Cañavate J P, Reith M, Manchado M. Selection of house-keeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Molecular Biology, 2008, 9: 28-39.
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[3] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[4] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[5] JU PengJu,NING Lei,GE LinHao,XU ChengJie,SHI HuaWei,LIANG KaiGe,MA Liang,LIU TaoRan,CHEN Ming,SUN DaiZhen. Analysis of Foreign Gene Copy Number in Transgenic Wheat by Optimized Digital PCR [J]. Scientia Agricultura Sinica, 2020, 53(10): 1931-1939.
[6] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[7] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[8] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[9] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[10] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[11] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[12] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[13] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[14] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[15] ZHANG Xu,LING Hui,LIU Feng,HUANG Ning,WANG Ling,MAO HuaYing,LI CongNa,TANG HanChen,SU WeiHua,SU YaChun,QUE YouXiong. Cloning and Expression Analysis of a Ⅱd Sub-Group WRKY Transcription Factor Gene from Sugarcane [J]. Scientia Agricultura Sinica, 2018, 51(23): 4409-4423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!