Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4409-4423.doi: 10.3864/j.issn.0578-1752.2018.23.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of a Ⅱd Sub-Group WRKY Transcription Factor Gene from Sugarcane

ZHANG Xu(),LING Hui,LIU Feng,HUANG Ning,WANG Ling,MAO HuaYing,LI CongNa,TANG HanChen,SU WeiHua,SU YaChun,QUE YouXiong()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University/Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002
  • Received:2018-06-12 Accepted:2018-07-29 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】 WRKY, a group of unique transcription factors in plants, plays an important role in plant physiological regulation and stress response. Through analysis of the role of transcription factor WRKY in sugarcane growth and development and stress resistance, this study will provide excellent gene resources for sugarcane resistance molecular breeding. 【Method】 A unigene sequence of WRKY gene was extracted from the sugarcane transcriptome database, and its full-length cDNA sequence was obtained by RT-PCR amplification. Bioinformatics analysis of this gene sequence and its encoded protein sequence was performed using ORF finder, Smart, ExPaSy, Prabi, NetPhos, Cell-PLOC 2.0 and DNAMAN6.0 softwares, and the phylogenetic tree analysis was constructed using MEGA6.0 software. The fusion expression vector of pCAMBIA1300-WRKY-GFP was constructed and delivered into Nicotiana benthamiana by Agrobacterium mediated method to determine the subcellular localization of WRKY protein in tobacco leaves. Yeast hybridization assay was used to verify whether WRKY possess transcriptional self-activation activity. The tissue specific expression (root, bud, leaf, stem pith and epidermis) of WRKY and its dynamic expression under MeJA (100 μmol·L -1), SA (5 mmol·L -1), PEG (25%), NaCl (250 mmol·L -1), CuCl2 (500 mmol·L -1) and CdCl2 (500 mmol·L -1) stresses in sugarcane variety ROC22 were analyzed by quantitative real-time PCR (qRT-PCR) technique.【Result】 A WRKY transcription factor gene, named ScWRKY6 (GenBank Accession Number: MH393927), was cloned from the sugarcane variety ROC22. This gene sequence was 1 289 bp in full length with a 1 059 bp ORF, encoding 352 amino acids, and contained 45 phosphorylation sites. The theoretical isoelectric point, the instability index and the hydrophilicity of ScWRKY6 protein was 9.73, 50.23 and -0.579, respectively, which is supposed to be an alkaline unstable hydrophilic protein. The ScWRKY6 protein has one WRKY domain and one zinc finger motif (CX5CX23HXH), and its amino acid sequence has the highest homology with Sorghum bicolor WRKY (XP_002464211.1). It is speculated that this gene belongs to the Ⅱd sub-group of WRKY family according to phylogenetic tree analysis. Subcellular localization results showed that the ScWRKY6::GFP fusion protein was located in the nucleus. Yeast transcriptional activation verification experiments indicated that ScWRKY6 protein did not have transcriptional auto-activation activity. qRT-PCR analysis revealed that ScWRKY6 was constitutively expressed in sugarcane, and the expression level in order from high to low were in bud, leaf, root, stem epidermis and stem pith. Its expression in bud, leaf and root were 2.05, 1.55 and 1.37 times higher than that in stem pith, respectively. The expression level of ScWRKY6 was up-regulated under the stresses of NaCl, PEG, MeJA, Cu 2+ and Cd 2+. Its highest expression was 4.18, 6.88, 3.63, 4.86 times higher than of the control when treated with NaCl for 12 h, PEG for 3 h, CuCl2 for 24 h and CdCl2 for 24 h, respectively.【Conclusion】 ScWRKY6 protein was located in the nucleus and did not have transcriptional auto-activation activity. The gene was expressed in different sugarcane tissues and was induced by NaCl, PEG, CuCl2 and CdCl2 treatments. It is presumed that the ScWRKY6 may play a role in response to drought stress, salt tolerance and metal ion stress in sugarcane.

Key words: sugarcane, WRKY transcription factor, exogenous stress, qRT-PCR

Table 1

Sequences of primers and their usage"

引物名称Primer name 引物序列Primer sequence (5°-3°) 用途Usage
ScWRKY6 F: GCTGCTGAGGGAGTTGCATA 扩增全长 Full length amplification
R: AAGCAGGGCCAAACATCTCA
GFP-ScWRKY6 F: GGGGTACCATGGAGGAAGTGGAGGAGGC 亚细胞定位 Subcellular localization
R: GCTCTAGACACCTGTGCTGACTGAGTTGGC
BD-ScWRKY6 F: CATGCCATGGAGATGGAGGAAGTGGAGGAGGC 转录激活 Transactivation
R: CGCGGATCCCACCTGTGCTGACTGAGTTGGC
qScWRKY6 F: GCGAGGTCCTTCTTGTCGTC 实时荧光定量PCR qRT-PCR
R: CGTTCACCGGATCGCTCATT
CAC F: ACAACGTCAGGCAAAGCAAA 内参基因 Actin gene
R: AGATCAACTCCACCTCTGCG
CUL F: TGCTGAATGTGTTGAGCAGC 内参基因 Actin gene
R: TTGTCGCGCTCCAAGTAGTC

Fig. 1

The nucleotide acid sequence and deduced amino acid sequence of ScWRKY6 gene *: Stop codon. The sequence of WRKYGQK motif was highlighted in red box, and the sequence of C2H2 motif (CX5CX23HXH) in black box"

Fig. 2

The analysis of conserved domain for ScWRKY6 protein 1:ChtBD2(286—332 bp);2:EGF_CA(282—326 bp)"

Fig. 3

Prediction of phosphorylation site of ScWRKY6"

Fig. 4

Alignment of ScWRKY6 amino acid sequences and those from other plant species"

Fig. 5

Phylogenetic tree of WRKY proteins from different plant species"

Fig. 6

Subcellular localization of ScWRKY6 in Nicotiana benthamiana lower epidermal cells The images are taken by green fluorescence, visible light, merged green fluorescence and visible light. 35S::GFP: The Agrobacterium tumefaciens strain carrying the empty vector pCAMBIA1300-GFP. 35S::ScWRKY6::GFP: The A. tumefaciens strain carrying the recombinant vector pCAMBIA1300-ScWRKY6- GFP. Red arrows 1, 2 and 3 indicate plasma membrane, cytoplasm and nucleus, respectively. Scale bar = 25 μm"

Fig. 7

The transactivation activity assay of ScWRKY6 in sugarcane SD/-Trp: Synthetic dropout medium plate; SD/-Trp(+X-α-Gal): Synthetic dropout medium plate without tryptophan (plus 5-bromo-4-chloro-3-indoxyl-α-D- galactopyranoside); SD/-Trp(+X-α-Gal+AbA): Synthetic dropout medium plate without tryptophan (plus 5-bromo-4-chloro-3-indoxyl-α-D-galactopyranoside and aureobasidin A)"

Fig. 8

The tissue-specific expression analysis of ScWRKY6 gene in sugarcane Bars with different superscripts differ significantly (P≤0.05), and error bars represent the standard error of each treating group (N=3). The same as below"

Fig. 9

Relative expression of ScWRKY6 in sugarcane under different exogenous stresses"

[1] 赵培方, 赵俊, 刘家勇, 昝逢刚, 夏红明, JACKSON P A, BASNAYAKE J, INMAN-BAMBER N G, 杨昆, 赵丽萍, 覃伟, 陈学宽, 赵兴东, 范源洪 . 干旱胁迫对甘蔗4个生理指标遗传变异的影响. 中国农业科学, 2017,50(1):28-37.
doi: 10.3864/j.issn.0578-1752.2017.01.003
ZHAO P F, ZHAO J, LIU J Y, ZAN F G, XIA H M, JACKSON P A, BASNAYAKE J, INMAN-BAMBE N G, YANG K, ZHAO L P, QIN W, CHEN X K, ZHAO X D, FAN Y H . Genetic variation of four physiological indexes as impacted by water stress in sugarcane. Scientia Agricultura Sinica, 2017,50(1):28-37. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.01.003
[2] 张风娟, 李健, 杜成忠, 杨丽涛, 李杨瑞, 邢永秀 . 不同甘蔗品种叶片气孔对水分胁迫的响应. 广西植物, 2014,34(6):821-827.
ZHANG F J, LI J, DU C Z, YANG L T, LI Y R, XING Y X . Stomatal response to water stress in leaves of different sugarcane cultivars. Guihaia, 2014,34(6):821-827. (in Chinese)
[3] ASHRAF M, RAHMATULLAH, AHMAD R, AFZAL M, TAHIR M A, KANWAL S, MAQSOOD M A . Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. Journal of Agronomy & Crop Science, 2009,195(4):284-291.
doi: 10.1111/j.1439-037X.2009.00364.x
[4] MENOSSI M, SILVAFILHO M C, VINCENTZ M, VANSLUYS M A, SOUZA G M . Sugarcane functional genomics: Gene discovery for agronomic trait development. International Journal of Plant Genomics, 2008,2008:458732.
doi: 10.1155/2008/458732 pmid: 18273390
[5] 孔维龙, 于坤, 但乃震, 杨绍宗, 包满珠, 黄向荣, 傅小鹏 . 甜菜WRKY转录因子全基因组鉴定及其在非生物胁迫下的表达分析. 中国农业科学, 2017,50(17):3259-3273.
doi: 10.3864/j.issn.0578-1752.2017.17.002
KONG W L, YU K, DAN N Z, YANG S Z, BAO M Z, HUANG X R, FU X P . Genome-wide identification and expression analysis of WRKY transcription factor under abiotic stress in Beta vulgaris. Scientia Agricultura Sinica, 2017,50(17):3259-3273. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.17.002
[6] EULGEM T, RUSHTON P J, ROBATZEK S, SOMSSICH I E . The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000,5(5):199-206.
doi: 10.1016/S1360-1385(00)01600-9
[7] BAKSHI M, OELMULLER R . WRKY transcription factors. Trends in Plant Science, 2014,9(2):e27700.
[8] PHUKAN U J, JEENA G S, SHUKLA R K . WRKY transcription factors: Molecular regulation and stress responses in plants . Frontiers in Plant Science, 2016,7:760.
doi: 10.3389/fpls.2016.00760 pmid: 4891567
[9] JIANG J J, MA S H, YE N H, JIANG M, CAO J, ZHANG J H . WRKY transcription factors in plant responses to stresses . Journal of Integrative Plant Biology, 2017,59(2):86-101.
doi: 10.1111/jipb.12513
[10] LEE H, CHA J, CHOI C, CHOI N, JI H S, SANG R P, LEE S, HWANG D J . Rice WRKY11 plays a role in pathogen defense and drought tolerance. Rice, 2018,11(1):5.
doi: 10.1186/s12284-018-0199-0 pmid: 29330772
[11] YANG G Y, YANG G Y, ZHANG W H, SUN Y D, ZHANG T T, HU D, ZHAI M Z . Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses. Biologia Plantarum, 2017,61(4):611-621.
[12] GUO P R, LI Z H, HUANG P X, LI B, FANG S, CHU J F, GUO H W . A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. The Plant Cell, 2017,29:2854-2870.
doi: 10.1105/tpc.17.00438 pmid: 29061866
[13] ZHANG L P, CHEN L G, YU D Q . Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiology, 2018,176(1):790-803.
doi: 10.1104/pp.17.00657 pmid: 29133369
[14] CHEN M H, YAN T X, SHEN Q, LU X, PAN Q F, HUANG Y R, TANG Y L, FU X Q, LIU M, JIANG W M, LV Z Y, SHI P, Ma Y N, HAO X L, ZHANG L D, LI L, TANG K X . Landular trichome-specific WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytologist, 2017,214(1):304-316.
doi: 10.1111/nph.14373 pmid: 28001315
[15] ISHIGURO S, NAKAMURA K . Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Molecular & General Genetics, 1994,244(6):563-571.
[16] ROSS C A, LIU Y, SHEN Q J . The WRKY gene family in rice ( Oryza sativa). Journal of Integrative Plant Biology, 2007,49(6):827-842.
[17] EULGEM T, SOMSSICH I E . Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007,10(4):366-371.
doi: 10.1016/j.pbi.2007.04.020 pmid: 17644023
[18] WEI K F, CHEN J, CHEN Y F, WU L J, XIE D X . Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research, 2012,19(2):153-164.
doi: 10.1093/dnares/dsr048 pmid: 22279089
[19] HE H S, DONG Q, SHAO Y H, JIANG H Y, ZHU S W, CHENG B J, XIANG Y . Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Reports, 2012,31(7):1199-1217.
[20] MUTHAMILARASAN M, BONTHALA V S, KHANDELWAL R, JAISHANKAR J, SHWETA S, NAWAZ K, PRASAD M . Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Frontiers in Plant Science, 2015,6:910.
doi: 10.3389/fpls.2015.00910 pmid: 4654423
[21] LAMBAIS M R . In silico differential display of defense-related expressed sequence tags from sugarcane tissues infected with diazotrophic endophytes. Genetics & Molecular Biology, 2001,24(1/4):103-111.
[22] LIU J X, QUE Y X, GU J L, XU L P, WU J Y, CHEN R K . Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane . African Journal of Biotechnology, 2012,11(24):6434-6444.
[23] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄 . 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013,34(11):2200-2208.
doi: 10.3969/j.issn.1000-2561.2013.11.022
HUANG N, ZHANG Y Y, LING H, LUO J, WU Q B, QUE Y X . Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chinese Journal of Tropical Crops, 2013,34(11):2200-2208. (in Chinese)
doi: 10.3969/j.issn.1000-2561.2013.11.022
[24] 肖新换, 黄宁, 张玉叶, 杨宗锋, 凌辉, 黄珑, 苏炜华, 阙友雄 . 甘蔗光合系统Ⅰ亚基O基因的克隆与表达分析. 应用与环境生物学报, 2015,21(2):208-214.
doi: 10.3724/SP.J.1145.2014.09033
XIAO X H, HUANG N, ZHANG Y Y, YANG Z F, LING H, HUANG L, SU W H, QUE Y X . Cloning and expression of photosystem I subunit O gene from sugarcane. Chinese Journal of Applied & Environmental Biology, 2015,21(2):208-214. (in Chinese)
doi: 10.3724/SP.J.1145.2014.09033
[25] 苏炜华, 黄珑, 黄宁, 刘峰, 苏亚春, 肖新换, 凌辉, 阙友雄 . 甘蔗细胞色素P450还原酶基因的RT-PCR扩增与表达分析. 应用与环境生物学报, 2016,22(2):173-178. (in Chinese)
SU W H, HUANG L, HUANG N, LIU F, SU Y C, XIAO X H, LING H, QUE Y X . RT-PCR amplification and expression analysis of a cytochrome P450 reductase gene from sugarcane. Chinese Journal of Applied & Environmental Biology, 2016,22(2):173-178.
[26] 徐群刚, 邝健飞, 单伟, 陆旺金, 陈建业 . 香蕉果实冷胁迫相关MaWRKY11转录因子的特性、互作蛋白筛选与鉴定. 热带亚热带植物学报, 2015,23(5):543-552.
doi: 10.11926/j.issn.1005-3395.2015.05.009
XU Q G, KUANG J F, SHAN W, LU W J, CHEN J Y . Characterization and interacting-protein identification of MaWRKY11 transcription factor related to cold stress from banana fruits. Journal of Tropical and Subtropical Botany, 2015,23(5):543-552. (in Chinese)
doi: 10.11926/j.issn.1005-3395.2015.05.009
[27] GUO J L, LING H, WU Q B, XU L P, QUE Y X . The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Scientific Reports, 2014,4:7042.
doi: 10.1038/srep07042 pmid: 4229666
[28] LIVAK K J, SCHMITTGEN T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△Ct method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262
[29] SHUAI L, LUO C G, ZHU L M, SHA R H, QU S C, CAI B H, WANG S H . Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple(Malus domestica). Journal of Plant Biology, 2017,60(2):215-230.
doi: 10.1007/s12374-016-0577-3
[30] BANERHEE A, ROYCHOUDHURY A . WRKY proteins: Signaling and regulation of expression during abiotic stress responses. The Scientific World Journal, 2015,2015:807560.
doi: 10.1155/2015/807560 pmid: 4387944
[31] JIANG M, LIU Q E, LIU Z N, LI J Z, HE C M . Over-expression of a WRKY transcription factor gene BoWRKY6 enhances resistance to downy mildew in transgenic Broccoli plants. Australasian Plant Pathology, 2016,45(3):327-334.
doi: 10.1007/s13313-016-0416-5
[32] CHEN L G, SONG Y, LI S J, ZHANG L P, ZOU C S, YU D Q . The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta, 2012,1819(2):120-128.
doi: 10.1016/j.bbagrm.2011.09.002 pmid: 21964328
[33] YUE H, WANG M, LIU S Y, DU X H, SONG W N, NIE X J . Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genomics, 2016,17(1):343.
doi: 10.1186/s12864-016-2677-3 pmid: 4862231
[34] VERWEIJ W, SPELT C E, BLIEK M, DE M V, WIT N, FARACO M, KOES R, QUATTROCCHIO F M . Functionally similar WRKY proteins regulate vacuolar acidification in Petunia and hair development in Arabidopsis. The Plant Cell, 2016,28(3):786-803.
doi: 10.1105/tpc.15.00608 pmid: 26977085
[35] GIRI C C, ZAHEER M . Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue & Organ Culture, 2016,126(1):1-18.
doi: 10.1007/s11240-016-0985-6
[36] 李俊杰, 韩璐璐, 马燕, 姚汪劲, 松国静, 郭先锋 . 芍药转录因子PlWRKY40的克隆及表达分析. 植物生理学报, 2017,53(4):609-618.
LI J J, HAN L L, MA Y, YAO W J, SONG G J, GUO X F . Cloning and expression analysis of Paeoniae transcription factor PlWRKY40. Plant Physiology Journal, 2017,53(4):609-618. (in Chinese)
[37] 肖培连, 冯睿杰, 侯丽霞, 吕晓彤, 朱丹, 刘新 . 葡萄WRKY18基因的克隆及表达特性分析. 植物生理学报, 2015,51(3):391-398.
XIAO P L, FENG R J, HOU L X, LV X T, ZHU D, LIU X . Gene cloning and expression analysis of WRKY18 in Vitis vinifera. Plant Physiology Journal, 2015,51(3):391-398. (in Chinese)
[38] LI R, ZHANG J, LI J, ZHOU G, WANG Q, BIAN W, ERB M, LOU Y . Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. eLife, 2015,17(4):e04805.
doi: 10.7554/eLife.04805 pmid: 26083713
[39] 欧阳石文, 冯兰香, 赵开军 . 植物几丁质结合蛋白及几丁质结合域特征和作用. 生命科学, 2002,14(2):89-91.
doi: 10.3969/j.issn.1004-0374.2002.02.007
OUYANG S W, FENG L X, ZHAO K J . Plant chitin-binding proteins and charaeters and roles of chitin binding domains. Chinese Bulletin of Life Sciences, 2002,14(2):89-91. (in Chinese)
doi: 10.3969/j.issn.1004-0374.2002.02.007
[40] PARK C Y, LEE J H, YOO J H, MOON B C, CHOI M S, KANG Y H, LEE S M, KIM H S, KANG K Y, CHUNG W S, LIM C O, CHO M J . WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 2005,579(6):1545-1550.
doi: 10.1016/j.febslet.2005.01.057
[41] GILROY S, TREWAVAS A . Signal processing and transduction in plant cells: the end of the beginning? Nature Reviews Molecular Cell Biology, 2001,2(4):307-314.
doi: 10.1038/35067109 pmid: 11283728
[42] HIRSCHI K D . The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology, 2004,136(1):2438-2442.
doi: 10.1104/pp.104.046490
[43] VANDERAUWERA S, VANDENBROUCKE K, INZE A, VAN D C B, MUHLENBOCK P, DE R D, NAOUAR N, VAN G T, VAN M M C, VAN B F . AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(49):20113-20118.
doi: 10.1073/pnas.1217516109 pmid: 23169634
[44] LI S J, ZHOU X, CHEN L G, HUANG W D, YU D Q . Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules & Cells, 2010,29(5):475-483.
[45] SHANG H H, WANG Z N, ZOU C S, ZHANG Z, LI W J, LI J, SHI Y Z, GONG W K, CHEN T T, LIU A Y, GONG J W, GE Q, YUAN Y L . Comprehensive analysis of NAC transcription factors in diploid Gossypium: Sequence conservation and expression analysis uncover their roles during fiber development. Science China Life Sciences, 2016,59(2):142-153.
doi: 10.1007/s11427-016-5001-1 pmid: 26803306
[46] WANG X L, YAN Y, LI Y Z, CHU X Q, WU C G, GUO X Q . GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLoS ONE, 2014,9(4):e93577.
doi: 10.1371/journal.pone.0093577 pmid: 3991585
[47] 祖倩丽, 尹丽娟, 徐兆师, 陈明, 周永斌, 李连城, 马有志, 闵东红, 张小红 . 谷子WRKY36转录因子的分子特性及功能鉴定. 中国农业科学, 2015,48(5):851-860.
doi: 10.3864/j.issn.0578-1752.2015.05.03
ZU Q L, YIN L J, XU Z S, CHEN M, ZHOU Y B, LI L C, MA Y Z, MIN D H, ZHANG X H . Molecular characteristics and functional identification of foxtail millet transcription factor WRKY36. Scientia Agricultura Sinica, 2015,48(5):851-860. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.05.03
[48] ZHOU Q Y, TIAN A G, ZOU H F, XIE Z M, LEI G, HUANG J, WANG C M, WANG H W, ZHANG J S, CHEN S Y . Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 2008,6(5):486-503.
[49] CAI R H, DAI W, ZHANG C S, WANG Y, WU M, ZHAO Y, MA Q, XIANG Y, CHENG B J . The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 2017,246(6):1215-1231.
doi: 10.1007/s00425-017-2766-9 pmid: 28861611
[50] 谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥, 董庆龙, 周宗山 . 苹果WRKY基因家族生物信息学及表达分析. 中国农业科学, 2015,48(16):229-230.
doi: 10.7685/j.issn.1000-2030.2015.01.007
GU Y B, JI Z R, CHI F M, QIAO Z, XU C N, ZHANG J X, DONG Q L, ZHOU Z S . Bioinformatics and expression analysis of the WRKY gene family in apple. Scientia Agricultura Sinica, 2015,48(16):229-230. (in Chinese)
doi: 10.7685/j.issn.1000-2030.2015.01.007
[51] TANG J, WANG F, HOU X L, WANG Z, HUANG Z N . Genome-wide fractionation and identification of WRKY transcription factors in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses. Plant Molecular Biology Reporter, 2014,32(4):781-795.
doi: 10.1007/s11105-013-0672-2
[52] YIN G J, XU H L, XIAO S Y, QIN Y J, LI Y X, YAN Y M, HU Y K . The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biology, 2013,13(1):148.
doi: 10.1186/1471-2229-13-148 pmid: 3850935
[53] JIANG Y Z, DUAN Y J, YIN Y, YE S L, ZHU J R, ZHANG F Q, LU W X, FAN D, LUO K . Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany, 2014,65(22):6629-6644.
doi: 10.1093/jxb/eru381 pmid: 4246191
[54] LIU B, XUE X D, CUI S P, ZHANG X Y, HAN Q M, ZHU L, LIANG X F, WANG X J, HUANG L L, CHEN X M, KANG Z S . Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Molecular Biology Reports, 2010,37(2):1045-1052.
doi: 10.1007/s11033-009-9823-9 pmid: 19757158
[55] VLOT A C, DEMPSEY D A, KLESSIG D F . Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009,47(1):177-206.
doi: 10.1146/annurev.phyto.050908.135202 pmid: 19400653
[56] 龙亚芹, 王万东, 王美存, 陈于福, 解德宏, 陈华蕊, 俞艳春, 尼章光 . 水杨酸( SA)诱导植物对病虫害产生抗性及作用机制研究. 热带农业科学, 2009,29(12):46-50.
doi: 10.3969/j.issn.1009-2196.2009.12.013
LONG Y Q, WANG W D, WANG M C, CHEN Y F, XIE D H, CHEN H R, YU Y C, NI Z G . Salicylic acid induced resistance of plants against insects and diseases and its interaction mechanism. Chinese Journal of Tropical Agriculture, 2009,29(12):46-50. (in Chinese)
doi: 10.3969/j.issn.1009-2196.2009.12.013
[57] CAO J J, LI M Y, CHEN J, LIU P, LI Z . Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Scientific Reports, 2016,6:37674.
doi: 10.1038/srep37674 pmid: 5121592
[58] JIANG Y J, YU D Q . The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiology, 2016,171(4):2771-2782.
doi: 10.1104/pp.16.00747 pmid: 27268959
[59] YE Y J, XIAO Y Y, HAN Y C, SHAN W, FAN Z Q, XU Q G, KUANG J F, LU W J, LAKSHMANAN P, CHEN J Y . Banana fruit VQ motif-containing protein5 represses cold-responsive transcription factor MaWRKY26 involved in the regulation of JA biosynthetic genes. Journal of Changsha Aeronautical Vocational & Technical College, 2016,6:23632.
doi: 10.1038/srep23632 pmid: 27004441
[60] ZHU J K . Plant salt tolerance. Trends in Plant Science, 2001,6(2):66-71.
[61] ATTREE S M, FOWKE L C . Embryogeny of gymnosperms: Advances in synthetic seed technology of conifers. Plant Cell, Tissue & Organ Culture, 1993,35(1):1-35.
[62] JIANG Y J, QIU Y P, HU Y R, YU D Q . Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Frontiers in Plant Science, 2016,7:145.
[63] GRUBER V, BLANCHET S, DIET A, ZANAF O, BOUALEM A, KAKAR K, ALUNNI B, UDVARDI M, FRUGIER F, CRESPI M . Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Molecular Genetics & Genomics, 2009,281(1):55-66.
doi: 10.1007/s00438-008-0392-8 pmid: 18987888
[64] ZHU D, HOU L X, XIAO P L, GUO Y, DEYHOLOS M K, LIU X . VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress. Plant Science, 2018.
doi: 10.1016/j.plantsci.2018.03.018
[65] 王学华, 戴力 . 作物根系镉滞留作用及其生理生化机制. 中国农业科学, 2016,49(22):4323-4341.
doi: 10.3864/j.issn.0578-1752.2016.22.006
WANG X H, DAI L . Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots. Scientia Agricultura Sinica, 2016,49(22):4323-4341. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.22.006
[66] SK0RZYNSKAPOLIT E, DRAZKIEWICZ M, KRUPA Z . Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. Acta Physiologiae Plantarum, 2010,32(1):169.
[67] LIU Z Q, FANG H H, PEI Y X, JIN Z P, ZHANG L P, LIU D M . WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana. Science Bulletin, 2015,60(11):995-1001.
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] ZHANG Jie,JIANG ChangYue,WANG YueJin. Functional Analysis of the Interaction Between Transcription Factors VqWRKY6 and VqbZIP1 in Regulating the Resistance to Powdery Mildew in Chinese Wild Vitis quinquangularis [J]. Scientia Agricultura Sinica, 2022, 55(23): 4626-4639.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] LI Hao,WEI BenHui,HUANG JinLing,LI ZhiGang,WANG LingQiang,LIANG XiaoYing,LI SuLi. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane [J]. Scientia Agricultura Sinica, 2021, 54(3): 522-532.
[5] ZHUANG XinBo,CHEN YinJi,ZHOU GuangHong. The Mechanism of Myofibrillar Protein Gel Functionality Influenced by Modified Sugarcane Dietary Fiber [J]. Scientia Agricultura Sinica, 2021, 54(15): 3320-3330.
[6] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,ZHU XiaoHui,ZENG Yan,PENG JiaYu,XIE RuLin,TAN HongWei,LI ZhongNing,SHEN XiaoWei,LIU XiHui. Research on Phosphorus Application Rate Based on Sugarcane Yield and Phosphorus Balance in Soil [J]. Scientia Agricultura Sinica, 2021, 54(13): 2818-2829.
[7] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[8] ZHOU YiFan,YANG LinSheng,MENG Bo,ZHAN Jian,DENG Yan. Analysis of Yield Gaps and Limiting Factors in China’s Main Sugarcane Production Areas [J]. Scientia Agricultura Sinica, 2021, 54(11): 2377-2388.
[9] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
[10] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[11] LIU JiaoJiao,WANG XueMin,MA Lin,CUI MiaoMiao,CAO XiaoYu,ZHAO Wei. Isolation, Identification, and Response to Abiotic Stress of MsWRKY42 Gene from Medicago sativa L. [J]. Scientia Agricultura Sinica, 2020, 53(17): 3455-3466.
[12] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[13] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[14] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[15] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!