Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1613-1620.doi: 10.3864/j.issn.0578-1752.2012.08.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Genetic Variation Analysis of 3′-UTR Region of Chicken Lpin1 Gene and the Potential Effect on miRNA Binding Sites

 LI  Su-Ya, ZHANG  Jian-Hong, CHEN  Wen, HUANG  Yan-Qun, SUN  Gui-Rong, HAN  Rui-Li, KANG  Xiang-Tao   

  1. 1.河南农业大学生命科学学院,郑州 450002
    2.河南农业大学牧医工程学院/家禽种质资源创新工程中心,郑州 450002
  • Received:2011-06-02 Online:2012-04-15 Published:2011-08-16

Abstract: 【Objective】 This experiment was conducted to study the genetic variation/haplotype of the 3′ -UTR of chicken Lpin1 gene and their distributions among breeds, and their potential effects on miRNA binding sites were predicted. 【Method】According to the chicken Lpin1 genome sequence ( GenBank accession: NC_006090), a pair of specific primers was designed to conduct the genetic variation/haplotype analysis in the 3′ -UTR of chicken Lpin1 gene in different breeds of chickens through direct PCR sequence combined with clone sequencing. 【Result】Eight variable sites were uncovered, these variation sites were all located at the 3′-UTR of chicken Lpin1 gene. Analysis showed the no variation sites were detected from Henan Game chicken in this region, however, six variation sites were detected from Gushi and Lushi chickens. Six variable sites (g.11A>T, g.77C>G, g.108_109delinsG, g.110_111delinsG, g.270A>G and g. 348G>T) with minor allele frequency ≥5% were selected for haplotype reconstruction, and six haplotypes were detected from six chicken breeds. P1 and P4 were the predominant haplotypes with frequencies >30%, respectively, only one haplotype was detected from Henan game chicken. Software prediction showed that g.77C>G variant could cause the increase/loss of several miRNA binding sites. 【Conclusion】 The results showed that the 3′-UTR of chicken Lpin1 gene was highly polymorphic, the distribution of variable sites and haplotypes in different breeds of chickens had clear difference.

Key words: chicken, Lpin1 gene, 3′-UTR, genetic variation, miRNA target site

[1]Han G S, Wu W I, Carman G M. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. The Journal of Biological Chemistry, 2006, 281(14): 9210-9218.

[2]Phan J, Reue K. Lipin, a lipodystrophy and obesity gene. Cell Metabolism, 2005, 1(1): 73-83.

[3]Gowri P M, Sengupta S, Bertera S, Katzenellenbogen B S. Lipin1 regulation by estrogen in uterus and liver: implications for diabetes and fertility. Endocrinology, 2007, 148(8): 3685-3693.

[4]Baev V, Daskalova E, Minkov I. Computational identification of novel microRNA homologs in the chimpanzee genome. Computational Biology and Chemistry, 2009, 33(1): 62-70.

[5]江元清, 凌  毅, 赵武玲. 真核mRNA的3′非翻译区转录后水平调控作用研究进展. 植物学通报, 2001, 18(1): 3-10.

Jiang Y J, Ling Y, Zhao W L. Progress in the studies on function of 3′untranslated region on post-transcriptional level. Chinese Bulletin of Botany, 2001, 18(1): 3-10. (in Chinese)

[6]杨具田, 徐红伟, 臧荣鑫, 蔡  勇, 卢建雄, 曹  忻, 霍生东, 刘根娣, 吴建平. 五个地方绵羊品种FAS 基因3′-UTR 区单核苷酸多态性研究. 中国农业科学, 2010, 43(13): 2784-2792.

Yang J T, Xu H W, Zang R X, Cai Y, Lu J X, Cao X, Huo S D, Liu G D, Wu J P. Polymorphism of 3′-utr of fatty acid synthase (FAS) gene in five chinese sheep breeds. Scientia Agricultura Sinica, 2010, 43(13): 2784-2792 . (in Chinese)

[7]Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Natural Genetics, 2006, 38: 813-818.

[8]Peterfy M, Phan J, Oswell G M, Xu P, Reue K. Genetic, physical, and transcript map of the fld region on mouse chromosome 12. Genomics, 1999, 62(3): 436-444.

[9]Peterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Natural Genetics, 2001, 27(1): 121-124.

[10]Suviolahti E, Reue K, Cantor R M, Phan J, Gentile M, Naukkarinen J, Soro-Paavonen A, Oksanen L, Kaprio J, Rissanen A, Salomaa V, Kontula K, Taskinen M R, Pajukanta P, Peltonen L. Cross-species analyses implicate Lipin 1 involvement in human glucose metabolism. Human Molecular Genetics, 2006, 15(3): 377-386.

[11]Yao-Borengasser A, Rasouli N, Varma V, Miles L M, Phanavanh B, Starks T N, Phan J, Spencer H J, McGehee R E Jr, Reue K, Kern P A. Lipin expression is attenuated in adipose tissue of insulin-resistant human subjects and increases with peroxisome proliferator-activated receptor gamma activation. Diabetes, 2006, 55(10): 2811-2818.

[12]Phan J, Peterfy M, Reue K. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. The Journal of Biological Chemistry, 2004, 279(28): 29558-29564.

[13]Liu G H, Gerace L. Sumoylation regulates nuclear localization of lipin-1alpha in neuronal cells. PLoS One, 2009, 4: e7031.

[14]Reue K, Zhang P. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS Letters, 2008, 582: 90-96.

[15]Douglas D S, Moran J L, Bermingham J R, Chen X J, Brindley D N, Soliven B, Beiver D R, Popko B. Concurrent Lpin1 and Nrcam mouse mutations result in severe peripheral neuropathy with transitory hindlimb paralysis. The Journal of Neuroscience, 2009(39), 29: 12089-12100.

[16]Michot C, Hubert L, Brivet M, de Meirleir L, Valayannopoulos V, Müller-Felber W, Venkateswaran R, Ogier H, Desguerre I, Altuzarra C, Thompson E, Smika M. LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood. Human Mutation, 2010, 31(7): E1564-E1573.

[17]Zeharia A, Shaag A, Houtkooper R, Hindi T, Delonlay P, Erez G. Mutations in LPIN1 cause recurrent acute myoglobinuria in childhood. The American Journal of Human Genetics, 2008, 83(4): 489-494.

[18]王伯君, 孙  玲, 黎绍波, 朱志明, 刘  榜. 鸡Lpin1基因c.1727C_T位点遗传变异及其与脂肪沉积性状的关联分析. 畜牧兽医学报, 2010, 41(9): 1076-1081.

Wang B J, Sun L, Li S b, Zhu Z M, Liu B. Genetic variation of the lpinl c.1727c>t and its association with fattiness traits in chicken. Acta Veterinaria et Zootechnica Sinica, 2010, 41(9): 1076-1081. (in Chinese)

[19]Trakooljul N, Hicks J A, Liu H C. Identification of target genes and pathways associated with chicken microRNA miR-143. Animal Genetics, 2010, 41(4): 357-364.

[20]Yong Y, Lin H. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 2005, 15: 97-98.

[21]Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 2005, 1: 47.

[22]Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. The American Journal of Human Genetics, 2003, 73(5): 1162-1169.

[23]Pruett C L, Winker K. The effects of sample size on population genetic diversity estimates in song sparrows Melospiza melodia. Journal of Avian Biology, 2008, 39: 252-256.

[24]Trask J A, Malhi R S, Kanthaswamy S, Johnson J, Garnica W T, Malladi V S, Smith D G. The effect of SNP discovery method and sample size on estimation of population genetic data for Chinese and Indian rhesus macaques (Macaca mulatta). Primates, 2011, 52(2): 129-138.

[25]Wong G K, Liu B, Wang J, Zhang Y, Yang X, Zhang Z. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 2004, 432: 717-722.

[26]张大勇, 姜新华. 遗传多样性与濒危植物保护生物学研究进展. 生物多样性, 1999, 7(1): 31-37.

Zhang D Y, Jiang X H. Progress in studies of genetic diversity and conservation biology of endangered plant species. Chinese Biodiversity, 1999, 7(1): 31-37. (in Chinese)

[27]Thering B J, Bionaz M, Loor J J. Long-chain fatty acid effects on peroxisome proliferator-activated receptor-alpha-regulated genes in Madin-Darby bovine kidney cells: optimization of culture conditions using palmitate. Journal of Dairy Science, 2009, 92(5): 2027-2037.

[28]Thering B J, Graugnard D E, Piantoni P, Loor J J. Adipose tissue lipogenic gene networks due to lipid feeding and milk fat depression in lactating cows. Journal of Dairy Science, 2009, 92(9): 4290-4300.

[29]Palaisa K, Morgante M, Tingey S, Rafalski A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. The Proceedings of the National Academy of Sciences of USA, 2004, 101(26): 9885.

[30]Saunders M A, Liang H, Li W H. Human polymorphism at microRNAs and microRNA target sites. The Proceedings of the National Academy of Sciences of USA, 2007, 104(9): 3300-3305.

[31]Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Natural Genetics, 2006, 38: 1452-1456.

[32]Mishra P J, Humeniuk R, Longo-Sorbello G S A, Banerjee D, Bertino J R. A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. The Proceedings of the National Academy of Sciences of USA, 2007, 104(33): 13513-13518.
[1] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[5] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[6] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[7] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[8] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[9] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
[10] YuYan YANG,YaoWen LI,Shuang XING,MinHong ZHANG,JingHai FENG. The Temperature-Humidity Index Estimated by the Changes of Surface Temperature of Broilers at Different Ages [J]. Scientia Agricultura Sinica, 2021, 54(6): 1270-1279.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] ZHU Mo,ZHENG MaiQing,CUI HuanXian,ZHAO GuiPing,LIU Yang. Comparison of Genomic Prediction Accuracy for Meat Type Chicken Carcass Traits Based on GBLUP and BayesB Method [J]. Scientia Agricultura Sinica, 2021, 54(23): 5125-5131.
[13] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[14] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
[15] ZHU XingHao,CHEN Qing,SHAO BingHao,GUO YuJun,ZHANG XiangLi,DU PengFei,ZHU Yao,HUANG YanQun,CHEN Wen. Effect of the Heterozygous Sex-Linked Dwarf Gene on Fat Deposition in Normal Type Chickens [J]. Scientia Agricultura Sinica, 2021, 54(1): 213-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!