Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1558-1567.doi: 10.3864/j.issn.0578-1752.2012.08.011

• HORTICULTURE • Previous Articles     Next Articles

Construction of Cucumber-Sour Cucumber Chromosome Introgression Lines and Location of Fruit Related QTLs

 MENG  Jia-Li, LOU  Qun-Feng, ZHOU  Xiao-Hui, SHI  Jian-Lei, CHEN  Jin-Feng   

  1. 南京农业大学园艺学院/作物遗传与种质创新国家重点实验室,南京 210095
  • Received:2011-09-07 Online:2012-04-15 Published:2012-01-19

Abstract: 【Objective】 A set of cucumber-sour cucumber chromosome introgression lines were constructed by using cultivated cucumber (Cucumis sativus L., 2n=14) cultivar ‘Beijingjietou’ as recurrent parent and the wild ‘sour cucumber’ (C. hystrix Chakr., 2n = 24) as donor parent by the way of marker-assisted selection, and QTL controlling cucumber fruit shape was detected initially. 【Method】 Fristly, through interspecific-backcrossing-selfing approach, a lot of cucumber-sour cucumber chromosome introgression lines were obtained. Then polymorphism of the parents was detected by 298 pairs of SSR markers which uniformly distributed in the cucumber genome. And then the cucumber-sour cucumber chromosome introgression lines which contained the wild sour cucumber chromosome segments from the strains were screened by using the detected differences between parents SSR markers. QTL analysis of three main traits affecting cucumber fruit shape(fruit length, fruit diameter, fruit length/diameter ratio) was conducted using t-test compared with the recurrent parent. 【Result】 A set of 50 cucumber-sour cucumber chromosome introgression lines was constructed. There are 149 chromosome introgression segments containing 61 different introgression segments were identified in the lines. The total length of the different segments was 259.95 cM, and the coverage was 45.37% in the cucumber genome. The length of the introgression segments ranged from 1.65 cM to 15.4 cM with an average of 5.41 cM. They distributed in 7 chromosomes of cucumber. A total of 13 QTL affecting cucumber fruit shape were detected in CSIL population initially. 【Conclusion】 In this research, a set of cucumber-sour cucumber introgression lines were created and QTL affecting cucumber fruit shape was detected initially. It provided new resources for utilization of genes from C. hystrix and also the material basis for fine mapping of quantitative traits in cucumber.

Key words: wild sour cucumber, chromosome introgression lines, marker-assisted selection, quantitative trait locus

[1]Howell P M, Marshall D F, Lydiate D G. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39(2): 348-358.

[2]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162.

[3]Eshed Y, Abu-Abied M, Saranga Y, Zamir D. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theoretical and Applied Genetics, 1992, 83: 1027-1034.

[4]Chetelat R T, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato(Lycopersicon esculentum). Theoretical and Applied Genetics, 2000, 100: 232-241.

[5]Aida Y, Tsunematsu H, Doi K, Yoshimura A. Development o f a series of introgression lines of japonica in the background of indica rice. Rice Genetics Newsletter1997, 14: 41-43.

[6]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice(Oryza rufipogon Griff.) segments in cultivated rice(Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theoretical and Applied Genetics, 2006, 112: 570-580.

[7]Huang X Q, Coster H, Ganal M W, Roder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2003, 106: 1379-1389.

[8]Chen J F, Kirkbride J H. A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome doubling. Brittonia, 2000, 52(4): 315-319.

[9]陈劲枫, 林茂松, 钱春桃 庄飞云, Lewis S. 甜瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究. 南京农业大学学报, 2001, 24 (1): 21-24.

Chen J F, Lin M S, Qian C T, Zhuang F Y, Lewis S, Identification of Meloidogyne incogntita (Kofoid & White) Chitwood resistance in Cucumis hystrix Chakr. and the progenies of its interspecific hybrid with cucumber (C. sativus L.), Journal of Nanjing Agricultural University, 2001, 24(1): 21-24.(in Chinese)

[10]Zhou X H, Wan H J, Qian C T, Chen J F. Development and characterization of Cucumis sativus-hystrix introgression lines exhibiting resistance to downy mildew. Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, 2008, posters: 353-358.

[11]史建磊, 娄群峰, 钱春桃, 万红建, 周晓慧, 陈劲枫. 黄瓜染色体片段导入系的构建与遗传评价. 南京农业大学学报, 2011, 34(1): 20-24.

Shi J L, Lou Q F, Qian C T, Wan H J, Zhou X H, Chen J F. Construction and genetic evaluation of chromosome segment introgression lines in cucumber. Journal of Nanjing Agricultural University, 2011, 34(1): 20-24. (in Chinese)

[12]Chen J F, Staub J E, Tashiro Y, Isshiki S, Miyazaki S. Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica, 1997, 96: 413-419.

[13]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.

[14]Ren Y, Zhang Z H, Liu J H, Staub J E, Han Y H, Cheng Z C, Li X F, Lu J Y, Miao H, Kang H X, Xie B Y, Gu X F, Huang S W. An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE, 2009, 4(6): e5795.

[15]Charters Y M, Robertson A, Wilkinson M J, Ramsay G. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera ) using 5’-anchored simple sequence repeat(SSR) primers. Theoretical and Applied Genetics, 1996, 92: 442-447.

[16]Young N D, Tanksley S D. Restiction fragment length polymorphism maps and the concept of graphical genotypes. Theoretical and Applied Genetics, 1989, 77: 95-101.

[17]Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiology, 2001, 127: 1425-1429.

[18]Lin S Y, Sasaki T, Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theoretical and Applied Genetics, 1998, 96(8): 997-1003.

[19]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154:885-891.

[20]Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theoretical and Applied Genetics, 1998, 97(1/2): 37-44.

[21]Eshed Y, Zamir D. Less-than-additve epistatic interactions of quantitve trait loci in tomato. Genetics, 1996, 143: 1807-1817.

[22]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamure Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell, 2000, 12: 2473-2483.

[23]曹清河, 陈劲枫, 钱春桃. 黄瓜抗霜霉病异源易位系CT-01的筛选与鉴定. 园艺学报, 2005, 32(6): 1098-1101.

Cao Q H, Chen J F, Qian C T. Identification and characterization of a cucumber alien translocation line CT-01possessing resistance to downy mildew. Acta Horticulturae Sinica, 2005, 32(6): 1098-1101. (in Chinese)

[24]钱春桃, 陈劲枫, 罗向东. 黄瓜抗枯萎病异源易位植株AT-04的鉴定筛选. 南京农业大学学报, 2006, 29(2): 20-24.

Qian C T, Chen J F, Luo X D. identification and characterization of cucumber alien translocation plant AT-04 with resistance to fusarium wilt. Journal of Nanjing Agricultural University, 2006, 29(2): 20-24. (in Chinese)

[25]庄飞云, 陈劲枫, 钱春桃, 李式军, 任  刚, 王志军. 甜瓜属种间杂交新种及其后代对低温的适应性反应. 南京农业大学学报, 2002, 25 (2): 27-30.

Zhuang F Y, Chen J F, Qian C T, Li S J, Ren G, Wang Z J. Responses of seedlings of Cucumis × hytivus and progenies to low temperature. Journal of Nanjing Agricultural University, 2002, 25(2): 27-30. (in Chinese)

[26]陈龙正, 陈劲枫, Jack Staub, 钱春桃. 通过种间杂交选育加工黄瓜新品种宁佳1号. 中国蔬菜, 2005(3): 4-6.

Chen L Z, Chen J F, Staub J, Qian C T. A new variety processed cucumber NingJia 7 breeding through interspecific hybridization. China Vegetables, 2005(3): 4-6. (in Chinese)

[27]刘冠明,李文涛,曾瑞珍, 张桂权. 水稻亚种间单片段代换系的建立.中国水稻科学, 2003, 17(3): 201-204.

Liu G M, Li W T, Zeng R Z, Zhang G Q. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chinese Journal of Rice Science, 2003, 17(3): 201-204. (in Chinese)

[28]景士西.园艺植物育种学总论.北京: 中国农业出版社, 2001: 209-219.

Jing S X. Remarks of Horticultural Plant Breeding. Beijing: China Agriculture Press, 2001: 209-219. (in Chinese)

[29]Kennard W C, Havey M J. Quantitative trait analysis of fruit quality in cucumber, QTL detection, confirmation, and comparison with mating-design variation. Theoretical and Applied Genetics, 1995, 91: 53-61.

[30]Owens K W, Bliss F A, Peterson C E. Genetic analysis of fruit length and weight in two cucumber populations using the inbred backcross line method. Journal of the American Society for Horticultural Science, 1985, 110: 431-436.

[31]Lower R L, Edwards M D. Cucumber breeding// Bassett M J (ed). Breeding Vegetable Crops. AVI. Westport, Connecticut, USA, 1986: 173-207.
[1] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[2] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[3] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[4] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[5] LiYuan PAN,JianBo HE,JinMing ZHAO,WuBin WANG,GuangNan XING,DeYue YU,XiaoYan ZHANG,ChunYan LI,ShouYi CHEN,JunYi GAI. Detection Power of RTM-GWAS Applied to 100-Seed Weight QTL Identification in a Recombinant Inbred Lines Population of Soybean [J]. Scientia Agricultura Sinica, 2020, 53(9): 1730-1742.
[6] JIA ShanShan,LUO QiangWei,LI ShaSha,WANG YueJin. Optimization of Embryo Rescue Technique and Production of Potential Seedless Grape Germplasm with Rosy Aroma [J]. Scientia Agricultura Sinica, 2020, 53(16): 3344-3355.
[7] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
[8] ZHANG ZhaoHua, WANG ZhiHui, HUAI DongXin, TAN JiaZhuang, CHEN JianHong, YAN LiYing, WANG XiaoJun, WAN LiYun, CHEN Ao, KANG YanPing, JIANG HuiFang, LEI Yong, LIAO BoShou. Fast Development of High Oleate Peanut Cultivars by Using Marker-Assisted Backcrossing and Their Evaluation [J]. Scientia Agricultura Sinica, 2018, 51(9): 1641-1652.
[9] YAN XiaoCui, LI ZaiFeng, YANG HuaLi, ZHANG HuanHuan, GEBREWAHID Takele Weldu, YAO ZhanJun, LIU DaQun, ZHOU Yue. Analysis of Wheat Leaf Rust Resistance Genes in 30 Important Wheat Cultivars [J]. Scientia Agricultura Sinica, 2017, 50(2): 272-285.
[10] ZHANG Chang-quan, ZHAO Dong-sheng, LI Qian-feng, GU Ming-hong, LIU Qiao-quan. Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality [J]. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283.
[11] CONG Chun-sheng, LI Yong-xiang, LI Chun-hui, SHI Yun-su, SONG Yan-chun, ZHANG Deng-feng, LI Yu, WANG Tian-yu. Research on Methodology of Maize Germplasm Development with Source of Hybrids by Using Marker-Assisted Selection [J]. Scientia Agricultura Sinica, 2016, 49(20): 3874-3885.
[12] ZHU Yu-jun, CHEN Jun-yu, ZHANG Zhen-hua, ZHANG Hong-wei, FAN Ye-yang, ZHUANG Jie-yun. QTL Mapping for Standard Heterosis of Yield Traits in Rice [J]. Scientia Agricultura Sinica, 2016, 49(2): 232-238.
[13] BI Yan-fei, XU Bing-hua, QIAN Chun-tao, GUO Jing, ZHANG Yong-bing, YI Hong-ping, CHEN Jin-feng. Pyramiding Disease Resistance Genes and Variety Improvement by Molecular Marker-Assisted Selection in Melon (Cucumis melon L.) [J]. Scientia Agricultura Sinica, 2015, 48(3): 523-533.
[14] XU Jian-Feng-1, LONG Yan-2, WU Jian-Guo-3, ZHAO Zhi-Gang-4, XU Hai-Ming-1, WEN Juan-1, MENG Jin-Ling-2, SHI Chun-Hai-1. QTL Mapping Based on Embryo and Maternal Genetic Systems for Oil and Protein Contents in Rapeseed (Brassica napus L.) [J]. Scientia Agricultura Sinica, 2014, 47(8): 1471-1480.
[15] YANG Sheng-xian, NIU Yuan, LI Meng, WEI Shi-ping, LIU Xiao-fen, Lü Hai-yan, ZHANG Yuan-ming. Association Mapping of Agronomic Traits in Soybean (Glycine max L. Merr.) and Mining of Novel Alleles [J]. Scientia Agricultura Sinica, 2014, 47(20): 3941-3952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!