Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4267-4283.doi: 10.3864/j.issn.0578-1752.2016.22.002

;

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Progresses in Research on Cloning and Functional Analysis of Key Genes Involving in Rice Grain Quality

ZHANG Chang-quan, ZHAO Dong-sheng, LI Qian-feng, GU Ming-hong, LIU Qiao-quan   

  1. Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu
  • Received:2016-08-12 Online:2016-11-16 Published:2016-11-16

Abstract: Rice (Oryza sativa L.) is one of the most important cereal crops in worldwide and also a major stable food in China, thus it is very important to breed novel rice cultivars with high yield as well as good grain quality. Rice grain quality is a complex trait, and usually means rice or rice products meeting the demand of end-users. Therefore, the concept of rice grain quality covers multiple features revealed by the physical and chemical characteristics, including milled rice ratio, grain shape, appearance, cooking time, aroma and its retention after cooking, eating palatability, and nutrition. In general, rice grain quality includes as milling quality, apparent quality, eating and cooking quality (ECQ), and nutritional value. The grain shape is not only the factors associated with yield but also crucial aspects of grain quality. In the past decade, there were rapid and great achievements in the cloning and functional analyses of the genes involving in rice grain qualities. For grain size and shape, numerous QTLs and genes have been cloned and characterized. These cloned genes could be divided into three groups based on the phenotypes of the mutants. The first group is associated with not only grain shape but also plant phenotype, such as D1, D2, D11, D61 and SMG1. The second group appears to specifically affect grain trait, including GS3, GL3.1, GW7, GW2, GW5, GS5, GS6, TGW6, GW8, BG2, GW6a and GS2, which are well valuable for improvement of grain yield and quality. The third group is called small and round seed, such as the SRS gene. Chalkiness is associated with both grain appearance and milling property, and only few such QTLs have been finely mapped and cloned, including Chalk5, cyPPDK, G1F1, OsRab5a, FLOURYENDOSPERM2, PDIL1-1 and SSG4. The starch comprises about 90% of the dry matter of rice endosperm, and thus the grain quality is greatly affected by starch composition and structure. Therefore, the starch biosynthesis plays a crucial role in the formation of rice quality, especially the eating and cooking quality. Recent studies had made deep understanding of the regulation network of starch biosynthesis related enzymes, and several transcriptional regulators had also been proven for involving in starch biosynthesis, such as Dull, OsEBP89, OsEBP5, OsRSR1 and OsbZIP58. For seed protein content, most of the genes for seed storage proteins have been well characterized, and some other genes, such as OsSar, OsRab5a, OsAPP6, RISBZ1, RPBF, OsVPS9A, OsGPA3 and GEF2 have also been identified associating with protein sorting and transporting. The aroma of cooked rice contributes to consumer sensory acceptance, and recent studies have confirmed that the BADH2 and OsP5CS genes are responsible for the synthesis of fragrance material 2-AP. As for the other nutritional factors, such as the contents of essential amino acid lysine, vitamins, anthocyanin and minerals, also many functional genes have been cloned or elucidated. Taken together, all of the above traits are known to be genetically controlled by multiple genes, and also interact with each other. In present review, the genetic networks involving in regulation of rice grain quality in the last decade were summarized and updated. It will give a better understanding of the genes that contribute to the overall grain quality as well as lay a foundation for development of new strategies for grain quality improvement with high yield in rice.

Key words: rice grain quality, gene cloning, quantitative trait locus (QTL), allelic variation, functional analysis

[1]    程式华. 中国超级稻育种技术创新与应用. 中国农业科学, 2016, 49(2): 205-206.
Cheng S H. Breeding technique innovation and application of China’s super rice. Scientia Agricultura Sinica, 2016, 49(2): 205-206. (in Chinese)
[2]    Rao Y C, Li Y Y, Qian Q.Recent progress on molecular breeding of rice in China.Plant Cell Reports, 2014, 33(4): 551-564.
[3]    Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development.Current Opinion in Plant Biology, 2013, 16(2): 236-246.
[4]    Peng T, Sun H Z, Du Y X, Zhang J, Li J Z, Liu Y X, Zhao Y F, Zhao Q Z. Characterization and expression patterns of micro RNAs involved in rice grain filling. PLoS One, 2013, 8(1): e54148.
[5]    王惠贞, 吴瑞芬, 李丹. 稻米品质形成和调控机理概述. 中国稻米,2016, 22(1): 10-13.
Wang H Z, Wu R F, Li D. Review on rice quality formation and its regulation mechanism.China Rice, 2016, 22(1): 10-13. (in Chinese)
[6]    王娇, 王洁, 强爱玲, 官景得, 孙国才, 孙建昌, 齐国锋, 王兴盛, 韩龙植. 北方不同气候条件对稻米品质性状的影响. 中国稻米, 2015, 21(6): 13-18.
Wang J, Wang J, Qiang A L, Guan J D, Sun G C, Sun J C, Qi G F, Wang X S, Han L Z. The influence of different climatic ecological conditions on rice quality traits in northern China. China Rice, 2015, 21(6): 13-18. (in Chinese)
[7]    陈帅君, 边嘉宾, 丁得亮, 崔晶. 不同有机肥处理对水稻品质和食味的影响. 中国稻米,201622(4): 42-45.
Chen S J, Bian J B, Ding D L, Cui J. Effects of organic fertilizers on quality and palatability of rice. China Rice, 2016, 22(4): 42-45. (in Chinese)
[8]    高继平, 隋阳辉, 张文忠, 姚晨, 高明超, 赵明辉, 徐正进. 水稻灌浆期冠层温度对植株生理性状及稻米品质的影响. 中国水稻科学, 2015, 29(5): 501-510.
Gao J P, Sui Y H, Zhang W Z, Yao C, Gao M C, Zhao M H, Xu Z J. Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice. Chinese Journal of Rice Science, 2015, 29(5): 501-510. (in Chinese)
[9]    Zhang C Q, Zhou L H, Zhu Z B, Lu H W, Zhou X Z, Qian Y T, Li Q F, Lu Y, Gu M H, Liu Q Q. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057.
[10]   Bao j s. Genes and QTLs for rice grain quality improvement// Yan W G, Bao J S. Rice-Germplasm, Genetics and Improvement  (ISBN 978-953-51-1240-2). InTech Open Access publisher. 2014: 239-278.
[11]   Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765.
[12]   Bao J S, Corke H, Sun M. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.).Theoretical and Applied Genetics, 2006, 113(7): 1171-1183.
[13]   Ning H F, Qiao J F, Liu Z H, Lin Z M, Li G H, Wang Q S, Wang S H, Ding Y F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. Journal of Cereal Science, 2010, 52(1): 90-95.
[14]   楠谷彰人. 中日水稻品种的食味比较. 北方水稻, 20075: 72-77.
Kusitani A.Comparison of palatability of rice varieties between China and Japan. North Rice, 2007, 5: 72-77. (in Chinese)
[15]   Long X H, Liu Q Q, Chan M L, Wang Q, Sun S S M. Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnology Journal, 2013, 11(4): 490-501.
[16]   Ufaz S, Galili G. Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiology, 2008, 147(3): 954-961.
[17]   Huang R Y, Jiang L R, Zheng J S, Wang T S, Wang H C, Huang Y M, Hong Z L. Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Science, 2013, 18(4): 218-226.
[18]   Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10284-10289.
[19]   Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell,2003, 15(12): 2900-2910.
[20]   Yamamuro C, hara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell,2000, 12(9): 1591-1605.
[21]   Abe Y, Mieda K, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. Genes and Genetic Systems, 2010, 85(5): 327-339.
[22]   Kitagawa K, Kurinami S, Oki K, Abe Y, Ando T, Kono I, Yano M, Kitano H, Iwasaki Y. A novel kinesin 13 protein regulating rice seed length. Plant and Cell Physiology, 2010, 51(8): 1315-1329.
[23]   Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America,2010, 107(45): 19579-19584.
[24]   Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21534-21539.
[25]   Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015, 47(8): 944-948.
[26]   Wang S K, Li S, Liu Q, Wu K, Zhang J, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015, 47(8): 949-954.
[27]   Song X J, Huang W, Shi Min, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007, 39(5): 623-630.
[28]   Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18(12): 1199-1209.
[29]   Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43(12): 1266-1269.
[30]   Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology, 2013, 55(10): 1-12.
[31]   Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013, 45(6): 707-711.
[32]   Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice. Nature genetics, 2012, 44(8): 950-954.
[33]   Xu F, Fang J, Ou S J, Gao S P, Zhang F, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C C. Variations in CYP78A13 coding region influence grain size and yield in rice. Plant Cell &Environment,2015, 38(4): 800-811.
[34]   Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81.
[35]   Che R H, Tong H N, Shi B H, Liu, Y Q, Fang S R, Liu D P, Xiao Y H, Hu B, Liu L C, Wang H R, Zhao M F, Chu C C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2016, 2(1): 15195.
[36]   Bridgemohan P, Bridgemohan R S H. Crop nutrition studies on grain filling and chalkiness in rice. Journal of plant breeding and crop science, 2014, 6(10): 144-152.
[37]   Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 2014, 46(4): 398-404.
[38]   Qin Y, Kim S, Sohn J. Genetic analysis and QTL mapping for grain chalkiness characteristics of brown rice (Oryza sativa L.). Genes and Genomics, 2009, 31(2): 155-164.
[39]   Wang Z M, Li H X, Liu X F, He Y, Zeng H L. Reduction of pyruvate orthophosphate dikinase activity is associated with high temperature-induced chalkiness in rice grains. Plant Physiology and Biochemistry, 2015, 89: 76-84.
[40]   Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G, Liu S J, Zhang L J, Wang J K, Wan J M. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2009, 118(3): 581-590.
[41]   Guo T, Liu X L, Wan X Y, Weng J F, Liu S J, Liu X, Chen M J, Li J J, Su N, Wu F Q, Cheng Z J, Guo X P, Lei C L, Wang J L, Jiang L, Wan J M. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). Journal of Integrative Plant Biology, 2011, 53(8): 598-607.
[42]   Kang H, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant Journal, 2005, 42(6): 901-911.
[43]   Wang E, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40(11): 1370-1374.
[44]   She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURYENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 2010, 22(10): 3280-3294.
[45]   Wan Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lv J, Zhou K N, Su N, Bao Y Q, Wan J M. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. The Plant Journal, 2010, 64(5): 812-824.
[46]   Han X H, Wang Y H, Liu X, Jiang L, Ren Y L, L F, Peng C, Li J J, Jin X M, Wu F Q, Wang J L, Guo X P, Zhang X, Cheng Z J, Wan J M. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. Journal of Experimental Botany, 2012, 63(1): 121-130.
[47]   Matsushima R, Maekawa M, Kusano M, Kondo H, Fujita N, Kawagoe Y, SakamotoW. Amyloplast-localized SUBSTANDARD STARCH GRAIN4 protein in?uences the size of starch grains in rice endosperm. Plant Physiology, 2014, 164(2): 623-636.
[48]   Liu X L, Guo Tao, Wan X Y, Wang H Y, Zhu M Z, Li A L, Su N, Shen Y Y, Mao B G, Zhai H Q, Mao L, Wan J M. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics, 2010, 11: 730.
[49]   Yamakawa H, Hirose T, Kuroda M, Yamaguchi T. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiology,2007, 144(1): 258-277.
[50]   Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm. Plant Physiology and Biochemistry, 2010, 48(6): 383-392.
[51]   PFISTER B, ZEEMAN S C. Formation of starch in plant cells. Cellular and Molecular Life Sciences, 2016, 73(14): 2781-2807.
[52]   Lee S K, Hwang S K, Han M, Eom J S, Kang H G, Han Y, Choi S B, Cho M H, Bhoo S H, An G, Hahn T R, Okita T W, Jeon J S. Identi?cation of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Molecular Biology, 2007, 65(4): 531-546.
[53]   Tuncel A, Kawaguchi J, Ihara Y, Matsusaka H, Nishi  A, Nakamura T, Kuhara S, Hirakawa H, Nakamura Y, Cakir B, Nagamine A, Okita T W, Hwang S K, Satoh H. The rice endosperm ADP-glucose pyrophosphorylase large subunit is essential for optimal catalysis and allosteric regulation of the heterotetrameric enzyme. Plant Cell Physiology, 2014, 55(6): 1169-1183.
[54]   Tuncel A, Okita T W. Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: Expectations and unanticipated outcomes. Plant Science, 2013, 211: 52-60.
[55]   Smidansky E D, Martin J M, Hannah L C, Fischer A M, Giroux M J. Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta, 2003, 216(4): 656-664.
[56]   Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. The Plant Journal, 1995, 7(4): 613-622.
[57]   Gu M H, Liu Q Q, Yan C J, Tan s z. Grain quality of hybrid rice: Genetic variation and molecular improvement//Xie F M, Hardy B. editors. Accelerating hybrid rice development (ISBN 978-971-22- 0252-0). Los Baños (Philippines): International Rice Research Institute. 2009: 345-356.
[58]   朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29(4): 431-438.
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and it’s application in rice breeding. Chinese Journal of Rice Science, 2015, 29(4): 431-438. (in Chinese)
[59]   Wanchana S, Toojinda T, Tragoonrung S, Vanavichit A. Duplicated coding sequence in the waxy allele of tropical glutinous rice (Oryza sativa L.). Plant Science, 2003, 165(6): 1193-1199.
[60]   Tran N A, Daygon V D, Resurreccion A P, Cuevas R P, Corpuz H M, Fitzgerald M A. A single nucleotide polymorphism in the Waxy gene explains a signi?cant component of gel consistency. Theoretical and Applied Genetics, 2011, 123(4): 519-525.
[61]   Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh  H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars. Breed Science, 2014, 64(2): 142-148.
[62]   Zhang C Q, Zhu L J, Shao K, Gu M H, Liu Q Q. Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics. Journal of the Science of Food Agriculture, 2013, 93(7): 1543-1551.
[63]   Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice. Theoretical and Applied Genetics, 2008, 116(7): 979-989.
[64]   Sato H, Suzuki Y, Okumo K, Hirano H, Imbe T. Genetic analysis of low-amylose content in a rice variety, ‘Milky Queen’. Breeding Research, 2001, 3: 13-19.
[65]   Yang J, Wang J, Fan F J, Zhu J Y, Chen T, Wang C L, Zheng T Q, Zhang J, Zhong W G, Xu J L. Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx-mp in Milky Princess and its application in japonica soft rice (Oryza sativa L.) breeding. Plant Breeding, 2013, 132(6): 595-603.
[66]   Han Y P, Xu M L, Liu X Y, Yan C J, Korban S S, Chen X L, Gu M H. Genes coding for starch branching enzymes are major contribution to starch viscosity characteristics in waxy rice (Oryza sativa L.). Plant Science, 2004, 166(2): 357-364.
[67]   Zhu L J, Liu Q Q, Sang Y J, Gu M H, Shi Y C. Underlying reasons for waxy rice flours having different pasting properties. Food Chemistry, 2010, 120(1): 94-100.
[68]   Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, BinHan, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature is a modi?er gene for gel consistency in rice. Journal of Integrative Plant Biology, 2011, 53(9): 756-765.
[69]   Zhang G Y, Cheng Z J, Zhang X, Guo X P, Su N, Jiang L, Mao L, Wan J M. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice (Oryza sativa L.) uncovers interactive effects on the physicochemical properties of starch. Genome, 2011, 54(6): 448-459.
[70]   Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, To-kunaga T, Nishi A, Satoh H, Park J H, Jane J L, Miyao A, Hirochika H, Nakamura Y. Characterization of SSIIIa-deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiology, 2007, 144(4): 2009-2023.
[71]   Fujita N, Satoh R, Hayashi A, Kodama M, Itoh R, AiharaS, Nakamura Y. Starch biosynthesis in rice endosperm requires the presence of either starch synthase I or IIIa. Journal of Experimental Botany, 2011, 62(14): 4819-4831.
[72]   Gámez-Arjona F M, Li J, Raynaud S, Baroja- Fernández E, Muñoz F J, Ovecka M, Rage P, Bahaji A, Pozueta-Romero J, Mérida Á. Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnology Journal, 2011, 9(9): 1049-1060.
[73]   Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch- branching enzyme I-de?cient mutation speci?cally affects the structure and properties of starch in rice endosperm. Plant Physiology, 2003, 133(3): 1111-1121.
[74]   Li C, Wu A C, Go R M, Malouf J, Turner M S, Malde A K, Mark A E, Gilbert R G. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions. Plos One, 2015, 10(4): e0125507.
[75]   Zhu L J, Gu M H, Meng X L, Cheung S C K, Yu H X, Huang J, Sun Y, Shi Y C, Liu Q Q. High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnology Journal, 2012, 10(3): 353-362.
[76]   Fujita N, Toyosawa Y, Utsumi Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata1 K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y. Characterization of pillulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. Journal of Experimental Botany, 2008, 60(13): 1009-1023.
[77]   Peng C, Wang Y H, Liu F, Ren Y L, Zhou K N, Lv J, Zheng M, Zhao S L, Zhang L, Wang C M, Jiang L, Zhang X, Guo X P, Bao Y, Wan J M. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. The Plant Journal14, 77(6): 917-930. ,20
[78]   Silver D M, Kötting O, Moorhead G B G. Phosphoglucan phosphatase function sheds light on starch degradation. Trends in Plant Science, 2014, 19(7): 471-478.
[79]   赵华, 王俊敏, 张其芳, 赵倩, 梅淑芳, 刘向蕾, 程方民. 水稻糖质胚乳突变体Sug-11籽粒灌浆过程的淀粉合成关键酶活性及其与淀粉理化特性关系. 中国水稻科学, 2015, 29(1): 73-81.
Zhao H, Wang J M, Zhang Q F, Zhao Q, Mei S F, Liu X L, Cheng F M. Activities of several starch synthesis enzymes in filling grains for rice sugary endosperm mutant (Sug-11) and it’s relation to starch quality. Chinese Journal of Rice Science, 2015, 29(1): 73-81. (in Chinese)
[80]   Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang S K, Okita T W, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. The Plant Cell, 2008, 20(7): 1833-1849.
[81]   DONG X B, ZHANG D, LIU J, LIU Q Q, LIU H L, TIAN L H, JIANG L, QU L Q. Plastidial disproportionating enzyme participates in starch synthesis in rice endosperm by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Plant Physiology, 2015, 169(4): 2496-2512.
[82]   Hwang S K, Koper K, Satoh H, Okita T W. Rice endosperm starch phosphorylase (Pho1) assembles with disproportionating enzyme (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. The Journal of Biological Chemistry, 2016, 291(38): 19994-20007.
[83]   Sun W Q, Zhou Q L, Yao Y, Qiu X J, Xie K, Yu S B. Identification of genomic regions and the isoamylase gene for reduced grain chalkiness in rice. PLoS One,2015, 10(3): e0122013.
[84]   Yan C J, Tian Z X, Fang Y W, Yang Y C, Li J, Zeng S Y, Gu S L, Tang S Z, Gu M H. Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 122(1): 63-76.
[85]   刘鑫燕, 朱孔志, 张昌泉, 洪燃, 孙鹏, 汤述翥, 顾铭洪, 刘巧泉. 利用9311来源的粳稻染色体片段代换系定位控制稻米糊化温度的微效QTL. 作物学报, 2014, 40(10): 1740-1747.
Liu X Y, Zhu K Z, Zhang C Q, Hong R, Sun P, Tang S Z, Gu M H, Liu Q Q.Mapping of minor QTLs for rice gelatinization temperature using chromosome segment substitution lines from indica 9311 in the japonica background. Acta Agronomica Sinica, 2014, 40(10): 1740-1747. (in Chinese)
[86]   Kiswara G, Lee J H, Hur Y J, Cho J H, Lee J Y, Kim S Y, Sohn Y B, Song Y C, Nam M H, Yun B W, Kim K M. Genetic analysis and molecular mapping of low amylose gene du12 (t) in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2014, 127(1): 51-57.
[87]   Zhu Y, Cai X L, Wang Z Y, Hong M M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. The Journal of Biology Chemistry, 2003, 278(48): 47803-47811.
[88]   Liu D R, Huang W X, Cai X L. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. Plant Science, 2013, 210: 141-150.
[89]   Zhang H, Duan L, Dai J S, Zhang C Q, Li J, Gu M H, Liu Q Q, Zhu Y. Major QTLs reduce the deleterious effects of high temperature on rice amylose content by increasing splicing efficiency of Wx pre-mRNA. Theoretical and Applied Genetics, 2013, 127(2): 273-282.
[90]   Fu F F, Xue H W. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiology, 2010, 154(2): 927-938.
[91]   Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in  rice endosperm. Journal of Experimental Botany, 2013, 64(11): 3453-3466.
[92]   Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. The Plant Journal, 2014, 80(6): 1118-1130.
[93]   Ahn S N, Bollich C N, McClung A M, Tanksley S D. RFLP analysis of genomic regions associated with cooked-kernel elongation in rice. Theoretical and Applied Genetics, 1993, 87(1/2): 27-32.
[94]   Amarawathi Y, Singh R, Singh A K, Singh V P, Mohapatra T, Sharma T R, Singh N K. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Molecular Breeding, 2008, 21(1): 49-65.
[95]   何予卿, 邢永忠, 葛小佳, 李香花, 徐才国. 水稻米饭延伸指数相关性状的基因定位研究.分子植物育种, 2003, 1(5/6): 613-619.
He Y Q, Xing Y Z, Ge X J, Li X H, Xu C G. Gene mapping for elongation index related traits on cooked rice grain quality. Molecular Plant Breeding, 2003, 1(5/6): 613-619. (in Chinese)
[96]   Ge X J, Xing Y Z, Xu C G, He Y Q. QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population. Plant Breeding, 2005, 124(2): 121-126.
[97]   Liu L L, Yan X Y, Jiang L, Zhang W W, Wang M Q, Zhou S R, Shen Y, Shen Y Y, Liu S J, Chen L M, Wang J K, Wan J M. Identification of stably expressed quantitative trait loci for cooked rice elongation in non-Basmati varieties. Genome, 2008, 51(2): 104-112.
[98]   Rathi S, Pathak K, Yadav R N S,Kumar B, Sarma R N. Association studies of dormancy and cooking quality traits in direct-seeded indica rice. Journal of Genetics, 2014, 93(1): 3-12.
[99]   周丽慧, 刘巧泉, 张昌泉, 徐勇, 汤述翥, 顾铭洪. 水稻种子蛋白质含量及组分在品种间的变异与分布. 作物学报, 2009, 35(5): 884-891.
Zhou L H, Liu Q Q, Zhang C Q, Xu Y, Tang S Z, Gu M H. Variation and distribution of seed storage protein content and composition among different rice varieties. Acta Agronomica Sinica, 2009, 35(5): 884-891. (in Chinese)
[100]周丽慧, 刘巧泉, 顾铭洪. 不同粒型稻米碾磨特性及蛋白质分布的比较. 作物学报, 2009, 35(2): 317-323.
Zhou L H, Liu Q Q, Gu M H. Milling characteristics and distribution of seed storage proteins in rice with various grain shapes. Acta Agronomica Sinica, 2009, 35(2): 317-323. (in Chinese)
[101] Vitale A, Hinz G. Sorting of proteins to storage vacuoles: how many mechanisms? Trends in Plant Science, 2005, 10(7): 316-323.
[102] Kawakatsu T, YAMAMOTO M P, Hirose S, YANO M, TAKAIWA F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. Journal of Experimental Botany, 2008, 59(15): 4233-4245.
[103]Liu F, Ren Y L, Wang Y H, Peng C, Zhou K N, Lv J, Guo X P, Zhang X, Zhong M S, Zhao S L, Jiang L, Wang H Y, Bao Y Q, Wan J M. OsVPS9A functions cooperatively with OsRAB5A to regulate post-Golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Molecular Plant, 2013, 6(6): 1918-1932.
[104]Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain ?lling in rice. The Plant Journal, 2009, 59(6): 908-920.
[105]Wen L, Fukuda M, Sunada M, Ishino S, Ishino Y, Okita T W, Ogawa M, Ueda T, Kumamaruet T. Guanine nucleotide exchange factor 2 for rab5 proteins coordinated with glup6/gef regulates the intracellular transport of the proglutelin from the golgi apparatus to the protein storage vacuole in rice endosperm. Journal of Experimental Botany, 2015, 66(20): 6137-6147.
[106]Tian L H, Dai L L, Yin Z J, Fukuda M, Kumamaru T, Dong X B, Xu X P, Qu L Q. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm. Journal of Experimental Botany, 2013, 64(10): 2831-2845.
[107]Peng B, Kong H L, Li Y B, Wang L Q, Zhong M, Sun L, GaoG J, Zhang Q L, Luo L J, Wang G W, Xie W B, Chen J X, Yao W, Peng Y, Lei L, Lian X M, Xiao J H, Xu C G, Li X H, He Y Q. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications, 2014, 5: 4847.
[108]Galili G, Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnology Journal, 2013, 11(2): 211-222.
[109] Wong H W, Liu Q Q, Sun S S. Biofortification of rice with lysine using endogenous histones. Plant Molecular Biology, 2015, 87(3): 235-248.
[110]Liu X, Zhang C C, Wang X R, Liu Q Q, Yuan D Y, Pan G, Sun S S, Tu J M. Development of high-lysine rice via endosperm-specific expression of a foreign lysine rich protein, gene. Bmc Plant Biology, 2016, 16(1): 1-13.
[111]Yang Q Q, Zhang C Q, Chan M L, Zhao D S, Chen J Z, Wang Q, Li Q F, Yu H X, Gu M H, Sun S S, Liu Q Q. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. Journal of Experimental Botany, 2016, 67(14): 4285-4296.
[112]Griglione A, Liberto E, Cordero C, Bressanello D, Cagliero C, Rubiolo P, Bicchi C, Sgorbini B. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality. Food Chemistry, 2015, 172: 305-313.
[113]Bradbury L, Fitzgerald T, Henry R, Jin Q, Waters D. The gene for fragrance in rice. Plant Biotechnology Journal, 2005, 3(3): 363-370.
[114]Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-Acetyl-1-Pyrroline, a major component in rice fragrance. The Plant Cell, 2008, 20(7): 1850-1861.
[115]Kovach M, Calingacion M, Fitzgerald M, McCouch S. The origin and evolution of fragrance in rice (Oryza sativa L.). Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14444-14449.
[116]Hinge V R, Patil H B, Nadaf A B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice, 2016, 9(1): 38.
[117]Keyghobad K, Kad T D, Zanan R L, Nadaf A B. 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene transformation. Applied Biochemistry and Biotechnology, 2015,177(7): 1466-1479.
[118]Mo Z W, Huang J X, Xiao D, Ashraf U, Duan M Y, Pan S G, Tian H, Xiao L Z, Zhong K Y, Tang X R. Supplementation of 2-AP, zn and la improves 2-acetyl-1-pyrroline concentrations in detached aromatic rice panicles in vitro. Plos One, 2016, 11(2): e0149523.
[119]Wakte K, Zanan R, Hinge V, Khandagale K, Nadaf A, Henry R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza Sativa L.): a status review. Journal of the Science of Food and Agriculture, 2016, doi: 10.1002/jsfa.7875.
[120]Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science Nutrition, 2014, 2(2): 75-104.
[121]Lei L, Waters D L, Rose T J, Bao J S, King G J. Phospholipids in rice: Signi?cance in grain quality and health bene?ts: a review. Food Chemistry, 2013, 139(1/4): 1133-1145.
[122]Long Q Z, Zhang W W, Wang P, Shen W B, Zhou T, Liu N N, Wang R, Jiang L, Huang J X, Wang Y H, Liu Y Q, Wan J M. Molecular genetic characterization of rice seed lipoxygenase 3 and assessment of its effects on seed longevity. Journal of Plant Biology, 2013, 56(4): 232-242.
[123]Huang J X, Cai M H, Long Q Z, Liu L L, Lin Q Y, Jiang L, Chen S H, Wan J M. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Research, 2014, 23(4): 643-655.
[124]Zhou G X, Ren N, Qi J F, Lu J, Xiang C Y, Ju H P, Cheng J A, Lou Y G. The 9-lipoxygenase osr9-lox1 interacts with the 13- lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiologia Plantarum, 2014, 152(1): 59-69.
[125]Gayen D, Ali N, Sarkar S N, Datta S K, Datta K. Down-regulation of lipoxygenase, gene reduces degradation of carotenoids of golden rice during storage. Planta, 2015, 242(1): 353-363.
[126]Misra B B. The black-box of plant apoplast lipidomes. Frontiers in Plant Science, 2016, 7: 323.
[127]Wang X, Zhou W, Lu Z, Ouyang Y, Chol S O, Yao J. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice. Plant Science, 2015, 239: 200-208.
[128] Chaudhary N, Khurana P. Vitamin E biosynthesis genes in rice: molecular characterization, expression profiling and comparative phylogenetic analysis. Plant Science, 2009, 177(5): 479-491.
[129]Wang X, Song Y E, Li J Y. High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice. Journal of Agricultural and Food Chemistry, 2013, 61(24): 5860-5869.
[130]Hwang J E, Ahn J W, Kwon S J, Kim J B, Kim S H, Kang S Y, Kim D S. Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Molecular Biology Reports, 2014, 41(11): 7671-7681.
[131]张桂云, 刘如如, 张鹏, 徐勇, 朱姜, 顾铭洪, 梁国华, 刘巧泉. 水稻籽粒维生素 E 及组分在品种间的变异与分布. 作物学报, 2012, 38(1): 55-61.
Zhang G Y, Liu R R, Zhang P, Xu Y, Zhu Ji, Gu M H, Liang G H, Liu Q Q. Variation and distribution of vitamin E and composition in the seeds among different rice varieties. Acta Agronomica Sinica, 2012, 38(1): 55-61. (in Chinese)
[132]Zhang G Y, Liu R R, Zhang P, Li Y, Tang K X, Liang G H, Liu Q Q. Increased alpha-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase. Transgenic Research, 2013, 22(1): 88-99.
[133]Wang X Q, Yoon M Y, Qiang H, Kim T S, Wei T, Choi B W, Lee Y S, Park Y J. Natural variations in OsγTMT, contribute to diversity of the α-tocopherol content in rice. Molecular General Genetics, 2015, 290(6): 2121-2135.
[134]Zhang G Y, Liu R R, Zhang C Q, Tang K X, Sun M F, Yan G H, Liu Q Q. Manipulation of the rice L-Galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. Plos One, 2015, 10(5): e0125870.
[135]Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Planta, 2007, 49(1): 91-102.
[136]Maeda H, Yamaguchi T, Omoteno M, Takarada T, Fujita K, Murata K, Iyama Y, Kojima Y, Morikawa M, Ozaki H, Mukaino N, Kidani Y, Ebitani T. Genetic dissection of black grain rice by the development of a near isogenic line. Breed Science, 2014, 64(2): 134-141.
[137]Oikawa T, Maeda H, Oguchi T, Yamaguchi T, Tanabe N, Ebana K, Yano M, Ebitani T, Izawa T. The birth of a black rice gene and its local spread by introgression. The Plant Cell, 2015, 27(9): 2401-2414.
[138]Hefferon K L. Nutritionally enhanced food crops; progress and perspectives. International Journal of Molecular Sciences, 2015, 16(2): 3895-3914.
[139] Sperotto R A, Boff T, Duarte G L, Santos L S, Grusak M A, Fett J P. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. Journal of Plant Physiology, 2010, 167(17): 1500-1506.
[140] Wang M, Gruissem W, Bhullar N K. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice. Frontiers in Plant Science, 2013, 4: 156.
[141]Boonyaves K, Gruissem W, Bhullar N K. Nod, promoter-controlled AtIRT1, expression functions synergistically with NAS, and FERRITIN, genes to increase iron in rice grains. Plant Molecular Biology, 2015, 90(3): 1-9.
[142]Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Mori S, Nishizawa K N. Overexpression of the barley nicotianamine synthase gene HvHAS1 increases iron and zinc concentrations in rice grains. Rice, 2009, 2: 155-166.
[143]Yoneyama T, Ishikawa S, Shu F. Route and regulation of  zinc, cadmium, and iron transport in rice plants (Oryza Sativa L.) during vegetative growth and grain filling: metal transporters,   metal speciation, grain cd reduction and Zn and Fe biofortification. International Journal of Molecular Sciences, 2015, 16(8): 19111-19129.
[144]Sreenivasulu N, Jr B V, Misra G, Cuevas R P, Anacleto R, Kavi Kishor P B. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. Journal of Experimental Botany, 2015, 66(7): 1737-1748.
[145]Ao Y, Xu C W, Cui X F, Xu Y, Wang A, Qiao Z Y, Liu Q Q. A genetic diversity assessment of starch quality traits in rice landraces from the Taihu basin, China. Journal of Integrative Agriculture, 2016, 15(3): 493-501.
[146]Lau W C P, Latif M A, Rafii Y R, Ismail M R, Puteh A. Advances to improve the eating and cooking qualities of rice by marker-assisted breeding. Critical Reviews in Biotechnology, 2016, 36(1): 1-12.
[147]Ye X D, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2002, 87(2): 303-305.
[148] Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie A R, Günther D, Gruissem W, Sautter C. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnology, 2009, 7(7): 631-644.
[149] Lau E. Breaking Mendelian inheritance with CRISPR-Cas. Nature Reviews Genetics, 2015, 16(5): 258-259.
[1] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[2] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[3] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[4] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[5] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[6] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[7] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[8] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[9] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[10] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[11] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[12] SHEN JingYuan,TANG MeiLing,YANG QingShan,GAO YaChao,LIU WanHao,CHENG JieShan,ZHANG HongXia,SONG ZhiZhong. Cloning, Expression and Electrophysiological Function Analysis of Potassium Channel Gene VviSKOR in Grape [J]. Scientia Agricultura Sinica, 2020, 53(15): 3158-3168.
[13] JIANG MengTing,ZHU Ning,GONG HongYong,HOU YingJun,YU XinYi,QU ShenChun. Cloning and Function Analysis of Gibberellin Insensitive DkGAI2 Gene in Nantongxiaofangshi (Diospyros kaki Linn. cv. nantongxiaofangshi) [J]. Scientia Agricultura Sinica, 2019, 52(19): 3417-3429.
[14] LIU YuFei,JIN JiQiang,YAO MingZhe,CHEN Liang. Screening, Cloning and Functional Research of the Rare Allelic Variation of Caffeine Synthase Gene (TCS1g) in Tea Plants [J]. Scientia Agricultura Sinica, 2019, 52(10): 1772-1783.
[15] LIU Chao, WANG LingLi, WU Di, DANG JiangBo, SHANG Wei, GUO QiGao, LIANG GuoLu. Molecular Cloning of Leaf Developmental Gene EjGRF5, Its Promoter and Expression Analysis in Different Ploidy Loquat (Eriobotrya japonica (Thunb.) Lindl.) [J]. Scientia Agricultura Sinica, 2018, 51(8): 1598-1606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!