Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1432-1438.doi: 10.3864/j.issn.0578-1752.2012.07.023

• RESEARCH NOTES • Previous Articles     Next Articles

Resistance Selection Against Clofentezine in Tetranychus urticae (Koch) and Change of Its Detoxification Enzymes Activity

 GAO  Xin-Ju, ZHANG  Zhi-Gang, DUAN  Xin-Le, SHEN  Hui-Min   

  1. 甘肃农业大学草业学院/草业生态系统省部共建教育部重点实验室/中-美草地畜牧业可持续发展中心,兰州 730070
  • Received:2011-07-04 Online:2012-04-01 Published:2012-01-11

Abstract: 【Objective】The objective of this study is to assess the development trend of resistance and the activity change of detoxification enzyme of Tetranychus urticae (Koch). 【Method】 The experiment was carried out in laboratory by using the methods of biological assay and biochemical analysis.【Result】After selected with clofentezine for 21 generations, the resistance strain (Clo-R21) increased to 122.26-fold. Clo-R21 exhibited 21.80 and 10.66-fold moderate level cross-resistance to pyr-clofentezine and liuyangmycin. However, the strain had low level cross-resistance to abamectin, fenpropathrin, beta-cyfluthrin, cypermethrin, azocyclotin, and celastrusangulatus with 6.85, 5.45, 5.02, 3.88, 3.48, 1.68-fold, respectively, and negative resistance to fenbutatin oxide, fenpyroximate, hydramethylnon, separately with 0.72, 0.65, 0.55-fold. Synergist experiments with different metabolic inhibitors revealed that triphenyl phosphate (TPP), diethyl maleate (DEM), piperonyl butoxide (PBO) and synergistic phosphorus (SV1), resulted in 1.39, 1.70, 6.78 and 1.64-fold synergist ratios, respectively. The major resistant mechanism to clofentezine was the increasing activities of carboxylesterases (CarE), acid phosphatase (ACP), alkaline phosphatase (ALP), glutathione-S-transferase (GSTs) and mixed function oxidase (MFO). Compared to the susceptible strain, the enzyme activities in Clo-R21 developed 2.25, 2.04, 1.91, 1.98 and 26.68 times.【Conclusion】 Activity increasing of MFO may play an important role in the resistance to clofentezine, meanwhile CarE, ACP, ALP, and GSTs may also confere resistance to the Clo-R21 strain.

Key words: Tetranychus urticae (Koch), clofentezine, resistance, cross resistance, synergist, detoxifying enzymes

[1]Stumpf N, Nauen R. Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pesiticide Biochemistry and Physiology, 2002, 72(2): 111-121.

[2]Ay R, Gürkan M O. Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae) from Turkey. Phytoparasitica, 2005, 33(3): 237-244.

[3]Van Leeuwen T, Van Pottelberge S, Tirry L. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Management Science, 2005, 61(5): 499-507. 

[4]Herron G, Edge V, Rophail J. Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia. Experimental and Applied Acarology, 1993, 17(6): 433-440.

[5]Ay R, Kara F E. Toxicity, inheritance and biochemistry of clofentezine resistance in Tetranychus urticae. Insect Science, 2011, 18(5): 503-511.

[6]沈慧敏, 张新虎. 二斑叶螨对甲氰菊酯、氧乐果和四螨嗪抗药性的选育、衰退和恢复. 昆虫学报, 2002, 45(3): 341-345.

Shen H M, Zhang X H. Selection, decline and recovery of Tetranychus urticae Koch resistance to fenpropathrin, omethoate and clofentezine. Acta Entomologica Sinica, 2002, 45(3): 341-345. (in Chinese)

[7]Tsagkarakou A, Pasteur N, Cuany A, Chevillon C, Navajas M. Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari: Tetranychidae) from Greece. Insect Biochemistry and Molecular Biology, 2002, 32(4): 417-424.

[8]Ay R, Yorulmaz S. Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. Journal of Pest Science, 2010, 83(2): 85-93.

[9]Ay R, Kara F E. Toxicity, inheritance of fenpyroximate resistance, and detoxification-enzyme levels in a laboratory-selected fenpyr -oximate-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Crop Protection, 2011, 30(6): 605-610.

[10]Kwon D H, Clark J M, Lee S H. Cloning of a sodium channel gene and identification of mutations putatively associated with fenpropathrin resistance in Tetranychus urticae. Pesticide Biochemistry and Physiology, 2010, 97(2): 93-100.

[11]Kim Y J, Lee S H, Lee S W, Ahn Y J. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross resistance and biochemical resistance mechanisms. Pest Management Science, 2004, 60(10): 1001-1006.

[12]程立生, 潘俊松. 几种杀螨剂对二斑叶螨和朱砂叶螨的毒力测定. 植物保护, 1994, 20(4): 18-19.

Cheng L S, Pan J S. Toxicity determination of several acaricides to Tetranychus urticae and Tetranychus cinnabarinus. Plant Protection, 1994, 20(4): 18-19. (in Chinese)

[13]何  林, 赵志模, 邓新平, 王进军, 刘  怀, 刘映红. 朱砂叶螨对三种杀螨剂的抗性选育与抗性风险评估. 昆虫学报, 2002, 45(5): 688-692.

He L, Zhao Z M, Deng X P, Wang J J, Liu H, Liu Y H. Selection and risk assessment of resistance to fenpropathrin, abamectin and pyridaben in Tetranychus cinnabarinus. Acta Entomologica Sinica, 2002, 45(5): 688-692. (in Chinese)

[14]Van Asperen K. A study of housefly esterase by means of a sensitive colorinmetric method. Journal of Insect Physiology, 1962, 8(4): 401-416.

[15]慕立义. 植物化学保护研究方法. 北京: 中国农业出版社, 1994.

Mu L Y. The Research Methods of Chemical Protection in Plants. Beijing: China Agriculture Press, 1994. (in Chinese)

[16]Hansen L G, Hodgson E. Biochemical characteristics of insect microsomes: N-and O-demeth ylation. Biochemical Pharmacology, 1971, 20(7): 1569-1578.

[17]Clark A G, Dick G L, Smith J N. Kinetic studies on a glutathione S-transferase from the larvae of Costelytra zealandica. Biochemical Journal, 1984, 217(1): 51-58.

[18]李二虎, 吴文君, 陈之浩, 李凤良, 李忠英. 小菜蛾对苦皮藤素抗性选育及交互抗性测定. 昆虫学报, 2003, 46(1): 18-21.

Li E H, Wu W J, Chen Z H, Li F L, Li Z Y. Selection for celangulin resistance and cross-resistance in the diamondback moth, Plutella xylostella (L.). Acta Entomologica Sinica, 2003, 46(1): 18-21. (in Chinese)

[19]Pree D J, Bittner L A, Whitty K J. Characterization of resistance     to clofentezine in populations of European red mite from orchards   in Ontario. Experimental and Applied Acarology, 2002, 27(3): 181-193.

[20]Young S J, Gunning R V, Moores G D. The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 2005, 61(4): 397-401.

[21]Young S J, Gunning R V, Moores G D. Effect of pretreatment with piperonyl butoxide on pyrethroid efficacy against insecticide resistant Helicoverpa armigera (Lepidoptera: Noctuidae) and Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Pest Management Science, 2006, 62(2): 114-119.

[22]Kang C Y, Wu G, Miyata T. Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Bemisia tabaci (Gennadius) (Hom., Aleyrodidae). Journal of Applied Entomology, 2006, 130(6/7): 377-385.

[23]Kim Y J, Park H M, Cho J R, Ahn Y J. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology, 2006, 99(3): 954-958.

[24]孟香清, 芮昌辉, 范贤林, 李福根. 三种增效剂对棉铃虫增效作用. 农药科学与管理, 1998(2): 14-16.

Meng X Q, Rui C H, Fan X L, Li F G. Joint action of 3 synergists with 3 insecticides in Heliothis armigera field population. Pesticide Science and Administration, 1998(2): 14-16. (in Chinese)

[25]张友军, 张文吉, 姚桂兰. 增效剂PBO、TPP对田间棉铃虫抗性种群增效作用研究. 农药科学与管理, 1996(2): 12-14.

Zhang Y J, Zhang W J, Yao G L. Studies on the synergistic action of PBO and TPP against field resistance strain of Heliothis armigera. Pesticide Science and Administration, 1996(2): 12-14. (in Chinese)

[26]刘金香, 韩巨才, 刘慧平. 山楂叶螨抗药性机制的初步研究. 四川大学学报: 自然科学版, 2006, 43(6): 1364-1368.

Liu J X, Han J C, Liu H P. Studies on resistance mechanisms of the hawthorn spider mite, Tetranychus viennensis Zacher, to isocarbophos and fenpropathrin. Journal of Sichuan University: Natural Science Edition, 2006, 43(6): 1364-1368. (in Chinese)
[1] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[2] LI GuiXiang,LI XiuHuan,HAO XinChang,LI ZhiWen,LIU Feng,LIU XiLi. Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1359-1370.
[3] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[4] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[5] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[6] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[7] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[8] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[9] XIANG MiaoLian, WU Fan, LI ShuCheng, WANG YinBao, XIAO LiuHua, PENG WenWen, CHEN JinYin, CHEN Ming. Effects of Melatonin Treatment on Resistance to Black Spot and Postharvest Storage Quality of Pear Fruit [J]. Scientia Agricultura Sinica, 2022, 55(4): 785-795.
[10] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[11] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[12] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[13] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[14] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[15] FENG AiQing,WANG CongYing,ZHANG MeiYing,CHEN Bing,FENG JinQi,CHEN KaiLing,WANG WenJuan,YANG JianYuan,SU Jing,ZENG LieXian,CHEN Shen,ZHU XiaoYuan. Pathotype Analysis of Xanthomonas oryzae pv. oryzae in Main Rice Producing Regions of China and Establishment of Differential Hosts of Near-Isogenic Lines [J]. Scientia Agricultura Sinica, 2022, 55(21): 4175-4195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!