Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (7): 1387-1391.doi: 10.3864/j.issn.0578-1752.2012.07.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

IL-8 Gene SNP-180A/G Affects Significantly Somatic Cell Score in Chinese Holstein Cow

 JI  De-Jun, CHEN  Ren-Jin, YANG  Zhang-Ping, ZHU  Guo-Qiang, MAO  Yong-Jiang, CHEN  Ying, LI  Rui   

  1. 1.扬州大学动物科学与技术学院,江苏扬州 225009
    2.扬州大学兽医学院,江苏扬州 225009
  • Received:2011-06-20 Online:2012-04-01 Published:2011-09-20

Abstract: 【Objective】 Bovine interleukin-8 (IL-8) is one of the major factors recruiting neutrophils during cow mastitis and causing rapid increase of somatic cell counts (SCC). Knowledge of IL-8 polymorphisms would be helpful to genetic selection of low SCC. 【Method】 The SNPs in the 5′ upstream of bovine IL-8 gene were investigated in 610 Chinese Holstein cows from 30 bull families in a dairy farm in Shanghai using polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, and milking traits and somatic cell score (SCS) were measured and their relationship was analyzed using a mixed animal model. 【Result】 The results showed that one SNP, A(-180)G, was detected, determining three genotypes, GG, GA and AA with frequencies of 0.41, 0.43 and 0.16, respectively. The SNP showed significant effect on SCS, with GG having a significantly lower SCS than GA or AA (P<0.01), while this SNP had no effect on test-day milk yield, test-day milk fat content, test-day milk protein content, and 305 d corrected milk yield. 【Conclusion】The findings demonstrated that the SNP -180A/G exerted significant effect on SCS.

Key words: Chinese Holstein cow, IL-8 gene, SCS, SNP, milking traits

[1]Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research, 2003, 34: 475-491

[2]Ruegg P L. Investigation of mastitis problems on farms. The Veterinary Clinics Food Animal Practice, 2003, 19(1): 47-73.

[3]Dingwell R T, Kelton D F, Leslie K E. Management of the dry cow in control of peripartum disease and mastitis. The Veterinary Clinics Food Animal Practice, 2003, 19(1): 235-265.

[4]Schukken Y H, Wilson D J, Welcome F, Garrison-Tikofsky L, Gonzalez R N. Monitoring udder health and milk quality using somatic cell counts. Veterinary Research, 2003, 34: 579-596.

[5]Koivula M, Mäntysaari E A, Negussie E, Serenius T. Genetic and phenotypic relationships among milk yield and somatic cell count before and after clinical mastitis. Journal of Dairy Science, 2005, 88(2): 827-833.

[6]Emanuelson U, Danell B, Philipsson J. Genetic parameters for clinical mastitis, somatic cell counts, and milk production estimated by multiple-trait restricted maximum likelihood. Journal of Dairy Science, 1988, 71(2): 467-476.

[7]Schutz M M. Genetic evaluation of somatic cell scores for United States dairy cattle. Journal of Dairy Science, 1994, 77(7): 2113-2129.

[8]郭秀兰, 王康宁. 乳中体细胞数在牛奶生产中的监控作用. 中国饲料, 2003, 20: 33-34.

Guo X L, Wang K N. Monitoring role of milk somatic cell count in milk production. China Feed, 2003, 20: 33-34. (in Chinese)

[9]Rupp R, Boichard D. Genetic parameters for clinical mastitis, somatic cell score, production, udder type and milking easy in first lactation Holsteins. Journal of Dairy Science, 1999, 82: 2198-2204.

[10]Larsen C G, Anderson A O, Appella E, Oppenheim J J, Matsushima  K. The neutrophil activating protein (NAP-i) is also chemotactic for T lymphocytes. Science, 1989, 243(4897): 1464-1466.

[11]Huber A R, Kunkel S L, Todd R T, Weiss S J. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science, 1991, 254(5028): 99-102.

[12]Koch A E, Polverini P J, Kunkel S L, Harlow L A, DiPietro L A, Elner V M, Elner S G, Strieter R M. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992, 258(5089): 1798-1801.

[13]Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology, 1994, 56(5): 559-564.

[14]Wang Y, Yang J, Gao Y, Du Y R, Bao L Y, Niu W Y, Yao Z. Regulatory effect of e2, IL-6 and IL-8 on the growth of epithelial ovarian cancer cells. Cellular and Molecular Immunology, 2005, 2(5): 365-372.

[15]Paape M, Mehrzad J, Zhao X, Detilleux J, Burvenich C. Defense of the bovine mammary gland by polymorphonuclear neutrophil Leukocytes. Journal of Mammary Gland Biology and Neoplasia, 2002, 7(2): 109-121.

[16]Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. Journal of Immunology, 1989, 143(4): 1366-1371.

[17]Mukaida N, Mahe Y, Matsushima K. Cooperative interaction of nuclear factor-κB and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. The Journal of Biological Chemistry, 1990, 265(34): 21128-21133.

[18]Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S, Kasahara T, Matsushima K. Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-κB is target for glucocorticoid-mediated interleukin 8 gene repression. The Journal of Biological Chemistry, 1994, 269(18): 13289-13295.

[19]Gao L B, Pan X M, Jia J, Liang W B, Rao L, Xue H, Zhu Y, Li S L, Lü M L, Deng W, Chen T Y, Wei Y G, Zhang L. IL-8-251A/T polymorphism is associated with decreased cancer risk among population-based studies: Evidence from a meta-analysis. European Journal of Cancer, 2010, 46(8): 1333-1343.

[20]官久强, 王洪梅, 王长法, 李秋玲, 李建斌, 帅素容, 侯明海, 仲跻峰. 中国荷斯坦牛白介素8 受体基因编码区多态性与乳腺炎的关联分析. 中国农业科学, 2010, 43(5): 1057-1065.

Guan J Q, Wang H M, Wang C F, Li Q L, Li J B, Shuai S R, Hou M H, Zhong J F. Genetic polymorphisms within the coding regions of IL8R gene and its association with mastitis trait in Chinese Holstein cattle. Scientia Agricultura Sinica, 2010, 43(5): 1057-1065. (in Chinese)

[21]Chen R J, Yang Z P, Ji D J, Mao Y J, Chen Y, Li Y L, Wu H T, Wang X L, Chang L L. Polymorphisms of the IL8 gene correlate with milking traits, SCS and mRNA level in Chinese Holstein. Molecular Biology Reports, 2011, 38(6): 4083-4088.

[22]陈仁金, 杨章平, 毛永江, 陈  莹, 常玲玲, 冀德君, 吴海涛, 李云龙, 李  锐. 中国荷斯坦牛IL8基因遗传多态性与泌乳性状以及体细胞评分的关联. 遗传, 2010, 32(12): 1-7.

Chen R J, Yang Z P, Mao Y J, Chen Y, Chang L L, Ji D J, Wu H T, Li Y L, Li R. Polymorphisms of the IL8 gene correlate with milking traits and SCS in Chinese Holstein. Hereditas, 2010, 32(12): 1-7. (in Chinese)

[23]Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M. Multiple control of interleukin-8 gene expression. Journal of Leukocyte Biology, 2002, 72(5): 847-855.

[24]Lee J W, Bannerman D D, Paape M J, Huang M K, Zhao X. Characterization of cytokine expression in milk somatic cells during intramammary infections with Escherichia coli or Staphylococcus aureus by real-time PCR. Veterinary Research, 2006, 37(2): 219-229.

[25]Weikard R, Kuhn C, Goldammer T, Freyer G, Schwerin M. The bovine PPARGC1A gene: molecular characterization and association of a SNP with variation of milk fat synthesis. Physiological Genomics, 2005, 21(1): 1-13.

[26]Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is like IL-8 and tumor necrosis factor-a, over expressed in human fat cells from insulin-resistant subjects. The Journal of Biological Chemistry, 2003, 278(46): 45777-45784.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[4] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[5] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[6] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[7] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[8] LIU YouChun,LIU WeiSheng,WANG XingDong,SUN Bin,LIU XiuLi,YANG YanMin,WEI Xin,YANG YuChun,ZHANG Duo,LIU Cheng,LI TianZhong. Identification of F1 Hybrids in Blueberry (Vaccinium corymbosum L.) Based on Specific-Locus Amplified Fragment Sequencing (SLAF-seq) [J]. Scientia Agricultura Sinica, 2021, 54(2): 370-378.
[9] YAN YongLiang,SHI XiaoLei,ZHANG JinBo,GENG HongWei,XIAO Jing,LU ZiFeng,NI ZhongFu,CONG Hua. Genome-Wide Association Study of Grain Quality Related Characteristics of Spring Wheat [J]. Scientia Agricultura Sinica, 2021, 54(19): 4033-4047.
[10] SONG ChunHui,CHEN XiaoFei,WANG MeiGe,ZHENG XianBo,SONG ShangWei,JIAO Jian,WANG MiaoMiao,MA FengWang,BAI TuanHui. Identification of Candidate Genes for Waterlogging Tolerance in Apple Rootstock by Using SLAF-seq Technique [J]. Scientia Agricultura Sinica, 2021, 54(18): 3932-3944.
[11] WANG JiQing,REN Yi,SHI XiaoLei,WANG LiLi,ZHANG XinZhong,SULITAN· GuZhaLiAYi,XIE Lei,GENG HongWei. Genome-Wide Association Analysis of Superoxide Dismutase (SOD) Activity in Wheat Grain [J]. Scientia Agricultura Sinica, 2021, 54(11): 2249-2260.
[12] ZHANG Fang,REN Yi,CAO JunMei,LI FaJi,XIA XianChun,GENG HongWei. Genome-wide Association Analysis of Wheat Grain Size Related Traits Based on SNP Markers [J]. Scientia Agricultura Sinica, 2021, 54(10): 2053-2063.
[13] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[14] JunYi GAI,JianBo HE. Major Characteristics, Often-Raised Queries and Potential Usefulness of the Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2020, 53(9): 1699-1703.
[15] JianBo HE,FangDong LIU,WuBin WANG,GuangNan XING,RongZhan GUAN,JunYi GAI. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Its Applications to Genetic and Breeding Studies [J]. Scientia Agricultura Sinica, 2020, 53(9): 1704-1716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!