Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (5): 958-965.doi: 10.3864/j.issn.0578-1752.2012.05.017

• ANIMAL SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Integration Sites and Their Characteristic Analysis of piggyBac Transposon in Cashmere Goat Genome

 BAI  Ding-Ping, FANG  Kun, YANG  Ming-Ming, QU  Lei, CHEN  Yu-Lin   

  1. 1.西北农林科技大学动物科技学院,陕西杨凌 712100
    2.新疆农垦科学院畜牧兽医研究所,新疆石河子 832000
    3.榆林学院陕西省陕北绒山羊工程技术研究中心,陕西榆林 719000
  • Received:2011-04-06 Online:2012-03-01 Published:2011-07-19

Abstract: 【Objective】 The objective of the experiment was to construct piggyBac (PB) transposons vectors and integration site in Cashmere goat genome of PB was also studied. 【Method】 Donor plasmid of PB-CMV-EGFP-Neo and helper-dependent plasmid of pcDNA-Trans were constructed and transferred into Cashmere goat fetal fibroblasts by lipofectamine 2000. Cell clones stably transfected were obtained after screening by G418. Transgenic cell genome was obtained and the integration site of PB transposons were detected by r-PCR.【Result】Transposition system was constructed and the integration of foreign gene in Cashmere goat fibroblasts was successfully mediated. Transgenic cell line was also obtained. There were 21 integration sites of PB transposon in Cashmere goat genome after r-PCR detection. Analysis of the composition of the five bases, which was close to the side of the PB integration sites TTAA, showed that PB 3′ tended to insert into region rich in AT (58.35%) and the PB 5′ tended to insert into region rich in GC (57.8%). 【Conclusion】 The transposition of foreign PB transposons in Cashmere goats was highly efficient. The integration site information which is acquired from this research will provide theoretical references for Cashmere goats study by PB transposons.

Key words: piggyBac, Cashmere goat, genome, integration sites

[1]Fraser M J, Smith G E, Summers M D. Acquisition of host cell DNA sequences by baculoviruses: relationship between host DNA insertions and FP mutants of autographa-californica and galleriamellonella nuclear polyhedrosis viruses. Journal of Virology, 1983, 47(2): 287-300.

[2]Fraser M J, Brusca J S, Smith G E, Summers M D. Transposon- mediated mutagenesis of a baculovirus. Virology, 1985, 145(2): 356-361.

[3]Fraser M J, Ciszczon T, Elick T, Bauser C. Precise excision of TTAA-specific lepidopteran transposons piggyback (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from   two species of Lepidoptera. Insect Molecular Biology, 1996, 5(2): 141-151.

[4]Ding S, Wu X H, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyback (PB) transposon in mammalian cells and mice. Cell, 2005, 122: 473-483.

[5]丁  昇. piggyBac转座系统-哺乳动物遗传分析的新工具[D]. 上海: 复旦大学, 2007.

Ding S. The piggyBac transposon system: a new tool for genetic analysis in mammals[D]. Shanghai: Fudan University, 2007. (in Chinese)

[6]Woltjen K, Michael I P, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P T, Gertsenstein M, Kaji K, Sung H K, Nagy A. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458: 766-770.

[7]Lu Y Y, Lin C Y, Wang X Z. piggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Research, 2009, 37(21): e141. doi: 10.1093/nar/gkp686.

[8]Handler A M, McCombs S D, Fraser M J, Saul S H. The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the mediterranean fruit fly. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(13): 7520-7525.

[9]李春峰, 黄  科, 甘进锋, 蒙炳超, 李  智, 夏庆友, 周泽扬. 转植酸酶基因家蚕的制作及表达检测. 昆虫学报, 2009, 52(7): 713-720.

Li C F, Huang K, Gan J F, Meng B C, Li Z, Xia Q Y, Zhou Z Y. Transgenic breeding of silkworms for the production of recombinant phytases. Acta Entomologica Sinica, 2009, 52(7): 713-720. (in Chinese)

[10]刘  春, 徐汉福, 陈玉琳, 李春峰, 张美蓉, 夏庆友. 家蚕转基因研究及肌动蛋白A3启动子的表达分析. 蚕学通讯, 2007, 27(3): 1-6.

Liu C, Xu H F, Chen Y L, Li C F, Zhang M R, Xia Q Y. Study of transgenic silkworm, bombyx mori-expression activity of actin3 promoter. Newsletter of Sericultural Science, 2007, 27(3): 1-6. (in Chinese)

[11]Thibault S T, Luu H T, Vann N, Miller T A. Precise excision and transposition of piggyBac in pink bollworm embryos. Insect Molecular Biology, 1999, 8(1): 119-123.

[12]Nakanishi H, Higuchi Y, Kawakami S, Yamashita F, Hashida M. piggyBac transposon-mediated long-term gene expression in mice. Molecular Therapy, 2010, 18(4): 707-714.

[13]Morales M E, Mann V H, Kines K J, Gobert G N, Fraser M J Jr, Kalinna B H, Correnti J M, Pearce E J, Brindley P J. piggyBac transposon mediated transgenesis of the human blood fluke, schistosoma mansoni. The FASEB Journal, 2007, 21(13): 3479-3489.

[14]Balu B, Chauhan C, Maher S P, Shoue D A, Kissinger J C, Fraser M J Jr, Adams J H. piggyBac is an effective tool for functional analysis of the plasmodium falciparum genome. BMC Microbiology, 2009, 9: 83. doi:10.1186/1471-2180-9-83.

[15]Huang X, Guo H F, Tammana S, Jung YC, Mellgren E, Bassi P, Cao  Q, Tu Z J, Kim Y C, Ekker S C, Wu X L, Wang S M, Zhou X Z. Gene transfer efficiency and genome-wide integration profiling of sleeping beauty, Tol2, and piggyBac transposons in human primary T cells. Molecular Therapy, 2010, 18(10): 1803-1813.

[16]Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos L  S, Yusa K, Banerjee R, Li M A, de La Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang F T, Liu P T, Bradley A. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science, 2010, 330(6007): 1104-1107.

[17]郭旭东, 尹  俊,  杨东山. 毛舒燕, 宝明涛, 旭日干. IGF-1毛囊特异表达载体的构建以及转染绒山羊胎儿成纤维细胞的研究. 畜牧兽医学报, 2009, 40(10): 1460-1467.

Guo X D, Yin J, Yang D S, Mao S Y, Bao M T, Xu R G. Construction of a hair-follicle-cell-specific expression vector of IGF-1 and its transfection into caprine fetal fibroblasts cells. Chinese Journal of Animal and Veterinary Sciences, 2009, 40(10): 1460-1467. (in Chinese)

[18]徐汉福, 幸俊逸, 王职峰, 夏庆友. 外源piggyBac转座元件在转基因家蚕中的整合位点分析. 蚕学通讯, 2010, 30(1): 1-7.

Xu H F, Xing J Y, Wang Z F, Xia Q Y. Insertion site analysis of foreign piggyBac transposable element in the transgenic silkworm, Bombyx mori. Newsletter of Sericultural Science, 2010, 30(1): 1-7. (in Chinese)

[19]Nakanishi H, Higuchi Y, Kawakami S, Yamashita F, Hashida M. piggyBac transposon-mediated long-term gene expression in mice. Molecular Therapy, 2010, 18(4): 707-714.

[20]Wu S C Y, Meir Y J J, Coates C J, Handler A M, Pelczar P, Moisyadi S, Kaminski J M. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2 and Mos1 in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(41): 15008-15013.

[21]Wilson M H, Coates C J, George A L Jr. piggyBac transposon- mediated gene transfer in human cells. Molecular Therapy, 2007, 15(1): 139-145.

[22]Wang W, Lin C Y, Lu D, Ning Z M, Cox T, Melvin D, Wang X Z, Bradley A, Liu P T. Chromosomal transposition of piggyBac in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(27): 9290-9295.

[23]Liang Q, Kong J, Stalker J, Bradley A. Chromosomal mobilization and reintegration of sleeping beauty and piggyBac transposons. Genesis, 2009, 47(6): 404-408.

[24]Galvan D L, Nakazawa Y, Kaja A, Kettlun C, Cooper L J N, Rooney C M, Wilson M H. Genome-wide mapping of piggyBac transposon integrations in primary human T cells. Journal of Immunotherapy, 2009, 32(8): 837-844.

[25]Li X, Harrell R A, Handler A M, Beam T, Hennessy K, Fraser M J Jr. piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Molecular Biology, 2005, 14(1): 17-30.
[1] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[2] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[3] LI Heng,ZI XiangDong,WANG Hui,XIONG Yan,LÜ MingJie,LIU Yu,JIANG XuDong. Screening of Key Regulatory Genes for Litter Size Trait Based on Whole Genome Re-Sequencing in Goats (Capra hircus) [J]. Scientia Agricultura Sinica, 2022, 55(23): 4753-4768.
[4] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[5] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[10] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[11] LI Ting,DONG Yuan,ZHANG Jun,FENG ZhiQian,WANG YaPeng,HAO YinChuan,ZHANG XingHua,XUE JiQuan,XU ShuTu. Genome-Wide Association Study of Ear Related Traits in Maize Hybrids [J]. Scientia Agricultura Sinica, 2022, 55(13): 2485-2499.
[12] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[13] CUI ChengQi, LIU YanYang, JIANG XiaoLin, SUN ZhiYu, DU ZhenWei, WU Ke, MEI HongXian, ZHENG YongZhan. Multi-Locus Genome-Wide Association Analysis of Yield-Related Traits and Candidate Gene Prediction in Sesame (Sesamum indicum L.) [J]. Scientia Agricultura Sinica, 2022, 55(1): 219-232.
[14] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[15] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!