Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (5): 832-839.doi: 10.3864/j.issn.0578-1752.2012.05.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Expression Analysis of a Chalcone Synthase (CHS) Gene from Purple Potato (Solanum tuberosum)

 HU  Chao-Yang, ZHOU  You-Feng, GONG  Yi-Fu, JIN  Si, WANG  He-Yu, ZHAO  Qun-Fen   

  1. 1.宁波大学海洋学院/教育部应用海洋生物重点实验室,浙江宁波 315211
  • Received:2011-08-31 Online:2012-03-01 Published:2011-10-31

Abstract: 【Objective】 The aim of this study was to clone the full length cDNA of chalcone synthase from purple potato, to analyze its expression at different organs and the relationship between CHS expression and anthocyanin accumulation after treated with different concentrations of GA3 and sucrose. 【Method】 The full-length cDNA of CHS was isolated from Solanum tuberosum by RT-PCR and RACE. Semi-quantitative RT-PCR was used to analyze the expression levels of StCHS in different organs, and the expression levels induced by GA3 and sucrose were adopted by semi-quantitative RT-PCR. The anthocyanin content of purple potato was measured by spectrophotometer method. 【Result】 The cloned full-length CHS was 1 490 bp in length, containing a 1 170 bp open reading frame (ORF), which encodes 389 amino acids. The deduced amino acids contained Cys164, Phe215, His303, and Asn336 active sites, which constitute the catalytic center of CHS. CHS is expressed at different levels in different organs, which was found to be expressed in stems, leaf stalks and leaves but not in roots, tubers or rachises. The anthocyanin accumulation was slightly induced by GA3 as well as the expression of CHS. The anthocyanin accumulation was strongly induced by sucrose, but the CHS expression was not notably induced. 【Conclusion】CHS gene was cloned from purple potato and its expression is tissue-specific. StCHS is a rate-limited gene in the flavonoid synthesis pathway of purple potato.

Key words: purple potato (Solanum tuberosum), chalcone synthase gene (CHS), anthocyanin, GA3, sucrose, gene expression

[1]Wasson A P, Pellerone F I, Mathesius U. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. The Plant Cell, 2006, 18: 1617-1629.

[2]Cain C C, Saslowsky D E, Walker R A, Shirley B W. Expression of chalcone synthase and chalcone isomerase proteins in Arabidopsis seedlings. Plant Molecular Biology, 1997, 35: 377-381.

[3]Pietta P G. Flavonoids as antioxidants. Journal of Natural Products, 2000, 63: 1035-1042.

[4]Potapovich A I, Kostyuk V A. Comparative study of antioxidant properties and cytoprotective activity of ?avonoids. Biochemistry (Moscow), 2003, 68: 514-519.

[5]Middleton E, Kandaswami C, Theoharides T C. The effects of plant ?avonoids on mammalian cells: Implications for in?ammation, heart disease, and cancer. Parmacological Reviews, 2000, 52: 673-751.

[6]Heller W, Hahlbrock K. Highly puri?ed “?avanone synthase” from parsley catalyzes the formation of naringenin chalcone. Archives of Biochemistry and Biophysics, 1980, 200: 617-619.

[7]Wang Y, Li J, Xia R X. Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow). Scientila Horticulturae, 2010, 125: 110-116.

[8]安利清, 杨  凯, 张  克, 赵祥云, 王文和, 杨  柳, 王建立. 百合查尔酮合成酶基因的克隆与分析. 西北植物学报, 2011, 31(3): 492-498.

An L Q, Yang K, Zhang K, Zhao X Y, Wang W H, Yang L, Wang J L. Cloning and analysis of chalcone synthase gene of lily. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(3): 492-498. (in Chinese)

[9]霍凤梅, 缪  军, 张一卉, 杨妍妍, 刘冰江, 霍雨猛, 杨建平, 吴  雄. 洋葱查尔酮合成酶基因的分子克隆和表达分析. 山东农业科学, 2010, 5: 1-4.

Huo F M, Miao J, Zhang Y H, Yang Y Y, Liu B J, Huo Y M, Yang J P, Wu X. Molecular cloning and expression analysis of CHS gene in onion. Shandong Agricultural Science, 2010, 5: 1-4. (in Chinese)

[10]Lo C, Coolbuygh R C, Nicholson R L. Molecular characterization and in silico expression analysis of chalcone synthase gene family in Sorghum bicolor. Physiological and Molecular Plant Pathology, 2002, 61: 179-188.

[11]Wiriyaampaiwong P, Thanonkeo P, Thanonkeo S. Cloning and characterization of chalcone synthase gene from Pueraria candollei var. mirifica. Journal of Biotechnology, 2010, 150S: 1-576.

[12]Saslowsky D E, Dana C D, Winkel-Shirley B. An allelic series for the chalcone synthase locus in Arabidopsis. Gene, 2000, 255: 127-138.

[13]Courtney-Gutterson N, Napoli C, Lemieux C, Morgan A, Firoozabady E, Robinson K E P. Modification of flower color in florist's chrysanthemum: Production of a white-flowering variety through molecular genetics. Nature Biotechnology, 1994, 12: 268-271.

[14]Pang Y Z, Shen G A, Wu W S, Liu X F, Lin J, Tan F, Sun X F, Tang K X. Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Science, 2005, 168: 1525-1531.

[15]De León I P, Oliver J P, Castro A, Gaggero C, Bentancor M, Vidal S. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biology, 2007, 7: 52.

[16]程龙军, 郭得平, 张建华, 马芹标. 高等植物花生长和花色素苷生物合成的信号调控. 植物生理学通讯, 2002, 38(2): 175-179.

Cheng L J, Guo D P, Zhang J H, Ma Q B. Signal control of flower growth and anthocyanin biosynthesis in higher plants. Plant Physiology Communications, 2002, 38(2): 175-179.

[17]Weiss D, van Blokland R, Kooter J M, Mol J N M, van Tunen A J. Gibberellic acid regulates chalcone synthase gene transcription in the corolla of Petunia hybrida. Plant Physiology, 1992, 98: 191-197.

[18]Comber C, Blanchet C, Geourjon C, Deleage G. NPS@: Network protein sequence analysis. Trends in Biochemical Sciences, 2000, 25: 147-150.

[19]Dedaldechamp F, Uhel C, Macheix J J. Enhancement of anthocyanin synthesis and dihydro?avonol reductase (DFR) activity in response to phosphate deprivation in grape cell suspensions. Phytochemistry, 1995, 40: 1357-1360.

[20]Schwede T, Kopp J, Guex N, Peitsch M C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 2003, 31: 3381-3385.

[21]Ferrer J L, Jez J M, Bowman M E, Dixon R A, Noel J P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nature Structural and Molecular Biology, 1999, 6(8): 775-784.

[22]Gomi K, Matsuoka M. Gibberellin signalling pathway. Current Opinion in Plant Biology, 2003, 6: 489-493.

[23]Weiss D, van der Luit A, Knegt E, Vermeer E, Mol J N, Kooter J M. Identification of endogenous gibberellins in petunia flower, induction of anthocyanin biosynthetic gene expression and the antagonistic effect of abscisic acid. Plant Physiology, 1995, 107: 695-702.

[24]Moalem-Beno D, Tamari G, Leitner-Dagan Y, Borochov A, Weiss D. Sugar-dependent gibberellin-induced chalcone synthase gene expression in petunia corollas. Plant Physiology, 1997, 113: 419-424.

[25]Ohlsson A B, Berglund T. Gibberellic acid-induced changes in glutathione metabolism and anthocyanin content in plant tissue. Plant Cell Tissue and Organ Culture, 2001, 64: 77-80.

[26]Zieslin N, Biran I, Halevy A H. The effect of growth regulation on the growth and pigmentation of ‘Baccara’ rose flowers. Plant and Cell Physiology, 1974, 15: 341-349.

[27]Moneruzzaman K M, Hossain A B M S, Normaniza O, Boyce A N. Growth, yield and quality responses to gibberellic acid (GA3) of apple Syzygium samarangense var jambu air madu fruit grown under field conditions. African Journal of Biotechnology, 2011, 10(56): 11911-11918.

[28]Kim J S, Lee B H, Kim S H, Oh K H, Yun C K. Response to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf. Journal of Plant Biology, 2006, 49: 16-25.

[29]Jiang C F, Gao X H, Liao L, Harberd N P, Fu X D. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiology, 2007, 145: 1460-1470.

[30]程海燕, 李德红. 光、糖与激素影响植物花色素苷合成与积累的研究进展. 亚热带植物科学, 2010, 39(3): 82-86.

Cheng H Y, Li D H. Progress in effects of light, saccharide and hormones on the anthocyanin synthesis and accumulation in plants. Subtropical Plant Science, 2010, 39(3): 82-86.

[31]Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 2006, 57: 675-709.

[32]Rook F, Bevan M W. Genetic approaches to understanding sugar response. Journal of Experimental Botany, 2003, 54: 495-501.

[33]Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology, 2005, 139: 1840-1852.

[34]杨少华, 王  丽, 穆  春, 王  翔, 何静辉, 赵静尧, 王林嵩. 蔗糖调节拟南芥花青素的生物合成. 中国生物化学与分子生物学报, 2011, 27(4): 364-369.

Yang S H, Wang L, Mu C, Wang X, He J H, Zhao J Y, Wang L S. Anthocyanin biosynthesis regulated by sucrose in Arabidopsis thaliana seedling. Chinese Journal of Biochemistry and Molecular Biology, 2011, 27(4): 364-369. (in Chinese)

[35]Weiss D. Regulation of flower pigmentation and growth: Multiple signalling pathways control anthocyanin synthesis in expanding petals. Physiologia Plantarum, 2000, 110: 152-157.
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[4] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[5] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[6] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[7] SONG JiangTao,SHEN DanDan,GONG XuChen,SHANG XiangMing,LI ChunLong,CAI YongXi,YUE JianPing,WANG ShuaiLing,ZHANG PuFen,XIE ZongZhou,LIU JiHong. Effects of Artificial Fruit Thinning on Sugar and Acid Content and Expression of Metabolism-Related Genes in Fruit of Beni-Madonna Tangor [J]. Scientia Agricultura Sinica, 2022, 55(23): 4688-4701.
[8] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[9] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[10] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[11] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[12] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[13] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[14] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[15] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!