Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (1): 127-134.doi: 10.3864/j.issn.0578-1752.2012.01.015

• HORTICULTURE • Previous Articles     Next Articles

Changes of Cell Wall Degrading Enzymes in Potato Tuber Tissue Slices Infected by Fusarium sulphureum

 YANG  Zhi-Min, BI  Yang, LI  Yong-Cai, KOU  Zong-Hong, BAO  Gai-Hong, LIU  Cheng-Kun, WANG  Yi, WANG  Di   

  1. 1.甘肃农业大学食品科学与工程学院,兰州 730070
    2.甘肃农业大学农学院/甘肃省干旱生境作物学重点实验室/甘肃省作物遗传改良与种质创新,重点实验室 兰州 730070
  • Received:2011-09-01 Online:2012-01-01 Published:2011-11-17

Abstract: 【Objective】The dynamic changes of main cell wall degrading enzymes (CWDEs) activities in potato tuber tissue slices infected by Fusarium sulphureum were investigated.【Method】Major CWDEs activities of potato tuber slices tissue (Longshu No.3) inoculated with F. sulphureum were detected and comparatively analyzed during different sampling period. 【Result】 A series of CWDEs including polygalacturonase (PG), polymethyl-galacturonase (PMG), carboxymethyl cellulose (Cx), β-glucosidase, polygalacturonic acid trans-eliminase (PGTE), pectin methyl-trans-eliminase (PMTE), pectin methylesterase (PE) and pectate lyase were detected in infected tissue. Whereas PG, PMG, Cx, and β-glucosidase showed higher activities as compared with others. The activity of PMG and Cx kept higher during early infection period (1-3 days after infection), but higher PG activity appeared during later infection period (4-6 days after inoculation), but β-glucosidase showed a rising trend during the enzyme dynamics analysis.【Conclusion】 These findings suggested that CWDEs were the primary pathogenic factors, and different CWDEs might take effect at different infecting periods.

Key words: potato, Fusarium sulphureum, cell wall degrading enzymes, infection

[1]Li Y C, Bi Y, Ge Y H, Sun X J, Wang Y. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. Journal of Food Science, 2009, 74(5): 213-218.

[2]魏周全, 张廷义, 杜 玺. 马铃薯块茎干腐病发生危害及防治. 植物保护, 2006, 32(2): 103-105.

Wei Z Q, Zhang T Y, Du X. The occurrence and control of dry rot of potato tuber. Plant Protection, 2006, 32(2): 103-105. (in Chinese)

[3]Boyd A E W. Potato storage disease. Review of Plant Pathology, 1972, 51: 297-321.

[4]Powelson M L, Johnson K B, Rowe R C. Potato Health Management. APS Press, St Paul, MN, USA, 1993.

[5]李金花, 柴兆祥, 王 蒂, 李敏权. 甘肃马铃薯贮藏期真菌性病害病原菌的分离鉴定. 兰州大学学报:自然科学版, 2007, 43(2): 39-42.

Lin J H, Chai Z X, Wang D, Li M Q. Isolation and identification of the pathogens of potato fungus diseases during storage in Gansu province. Journal of Lanzhou University: Natural Sciences, 2007, 43(2): 39-42. (in Chinese)

[6]叶琪明, 王拱辰. 浙江马铃薯干腐病病原研究初报. 植物病理学报, 1995, 25(2): 148.

Ye Q M, Wang G C. On Fusarium dry rot of potato in Zhejiang. Acta Phytopathologica Sinica, 1995, 25(2): 148. (in Chinese)

[7]孙小娟, 李永才, 毕 阳, 刘 瑾, 尹 艳. 西北地区马铃薯贮藏期病害调查分析. 中国马铃薯, 2009, 23(6): 364-365.

Sun X J, Li Y C, Bi Y, Liu J, Yin Y. The investigation and analysis of postharvest diseases of potato in northwest regions. Chinese Potato Journal, 2009, 23(6): 364-365. (in Chinese)

[8]何苏琴, 金秀琳, 魏周全, 张廷义, 杜 玺, 骆得功. 甘肃省定西地区马铃薯块茎干腐病病原真菌的分离鉴定. 云南农业大学学报, 2004, 19(5): 550-552.

He S Q, Jin X L, Wei Z Q, Zhang T Y, Du X, Luo D G. Isolation and identification of pathogens causing dry rot of potato tuber in Dingxi prefecture of Gansu province. Journal of Yunnan Agricultural University, 2004, 19(5): 550-552. (in Chinese)

[9]Sun X J, Bi Y, Li Y C, Han R F, Ge Y H. Postharvest chitosan treatment induces resistance in potato against Fusarium sulphureum. Agricultural Sciences in China, 2008, 7(5): 615-621.

[10]Van Etten H D, Maxwell D P, Bateman D F. Lesion maturation, fungal development, and distribution of endopolygalacturonase and cellulose in Rhizoctonia-infected bean hypocotyls tissues. Phytopathology, 1967, 57: 121-126.

[11]李宝聚, 周长力, 赵奎华, 李凤云, 陈红漫. 黄瓜黑星病菌致病机理的研究.Ⅱ.细胞壁降解酶及其在致病中的作用. 植物病理学报, 2000, 30(1): 13-18.

Li B J, Zhou C L, Zhao K H, Li F Y, Chen H M. Pathogenic mechanism of scab of cucumber caused by Cladosporium cucumerinum. Ⅱ. The cell wall degrading enzymes and its pathogenic action. Acta Phytopathologica Sinica, 2000, 30(1): 13-18. (in Chinese)

[12]李宝聚, 周长力, 赵奎华, 李凤云, 黄国坤. 黄瓜黑星病菌致病机理的研究.Ⅲ.细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用. 植物病理学报, 2001, 31(1): 63-69.

Li B J, Zhou C L, Zhao K H, Li F Y, Huang G K. Pathogenic mechanism of scab of cucumber caused by Cladosporium cucumerinum. Ⅲ. Effects and synergism of cell wall degrading enzymes and toxin produced by C. cucumerinum on ultrastructure of cucumber. Acta Phytopathologica Sinica, 2001, 31(1): 63-69. (in Chinese)

[13]Simbo A. The role of pectinase enzyme in the development of soft rot caused by Pseudomonas fluorescens in the purple variety of onions (Allium cepa). African Journal of Microbiology Research, 2009, 3(4): 163-167.

[14]高增贵, 陈 捷, 高洪敏, 唐朝荣, 宋佐衡, 薛春生. 玉米茎腐病菌产生的细胞壁降解酶种类及其活性分析. 植物病理学报, 2000, 30(2): 148-152.

Gao Z G, Chen J, Gao M H, Tang C R, Song Z H, Xue C S. The kinds and activity of cell wall degrading enzymes produced from corn stalk rot pathogens. Acta Phytopathologica Sinica, 2000, 30(2): 148-152. (in Chinese)

[15]陈 捷, 唐朝荣, 邹庆道, 李 程, 金兆兰. 玉米纹枯病菌致病因子的研究. 沈阳农业大学学报, 1999, 30(3): 189-194.

Chen J, Tang C R, Zou Q D, Li C, Jin Z L. On pathogenicity factors in maize sheath blight. Journal of Shenyang Agricultural University, 1999, 30(3): 189-194. (in Chinese)

[16]刘志恒, 亓 烨, 黄欣阳, 杨 红, 侯 悦, 张 睿. 黄瓜棒孢叶斑病(褐斑病)病菌细胞壁降解酶产生条件及活性分析. 中国蔬菜, 2011(8): 76-80.

Liu Z H, Qi Y, Huang X Y, Yang H, Hou Y, Zhang R. Conditions and activity analysis of cell wall degrading enzymes produced from Corynespora cassiicola of brown spot of cucumber. China Vegetables, 2011(8): 76-80. (in Chinese)

[17]Fonseca M J V, Said S. Sequential Production of Pectinases by Penicillium frequentans. World Journal of Microbiology and Biotechnology, 1995, 11(2): 174-177.

[18]Tian C M, Zhao P, Cao Z M. Role of cell wall degrading enzymes in the interaction of poplar and Melampsora larici-populina Kleb. Front. Forestry China, 2009, 4(1): 111-116.

[19]Kang Z, Buchenauer H. Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. Journal of Phytopathology, 2000, 148: 263-275.

[20]Ray H, Hammerschmidt R. Responses of potato tuber to infection by Fusarium sambucinum. Physiological and Molecular Plant Pathology, 1998, (53): 81-92.

[21]曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社, 2007.

Cao J K, Jiang W B, Zhao Y M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetables. Beijing: China Light Industry Press, 2007. (in Chinese)

[22]陈夕军, 张 红, 徐敬友, 童蕴慧, 纪兆林. 水稻纹枯病菌胞壁降解酶的产生及致病作用. 江苏农业学报, 2006, 22(1): 24-28.

Chen X J, Zhang H, Xu J Y, Tong Y H, Ji Z L . Cell wall degrading enzymes produced by Rhizoctonia solani and their pathogenicity to rice plants. Jiangsu Journal of Agricultural Sciences, 2006, 22(1): 24-28. (in Chinese)

[23]Hagerman A E, Austin P J. Continuous spectrophotometric assay for plant pectin methyleasterase. Journal of Agricultural and Food Chemistry, 1986(34): 440-444.

[24]齐凤坤, 康立功, 许向阳, 李景富. 番茄芝麻斑病原菌产生的细胞壁降解酶种类及其活性变化. 植物保护, 2010(36): 47-51.

Qi F K, Kang L G, Xu X Y, Li J F. The kinds and activity of cell wall degrading enzymes produced from tomato Helminthosporium carposaprum pathogens. Plant Protection, 2010(36): 47-51. (in Chinese)

[25]Natalia M, Simone R S, Roberto S, Eleni G. Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct. Brazilian Archives of Biology and Technology, 2004, 47(5): 813-819.

[26]吴洁云, 纪兆林, 徐敬友, 陈夕军, 童蕴慧. 灰葡萄孢胞壁降解酶对番茄植株致病作用的分析. 扬州大学学报: 农业与生命科学版, 2010, 31(3): 70-74.

Wu J Y, Ji Z L, Xu J Y, Chen X J, Tong Y H. Analysis on the pathogenicity of the cell wall degradation enzymes produced by Botrytis cinerea to tomato plant. Journal of Yangzhou University: Agricultural and Life Science Edition, 2010, 31(3): 70-74. (in Chinese)

[27]李祖明, 张洪勋, 白志辉, 李鸿玉. 微生物果胶酶研究进展. 生物技术通报, 2010(3): 42-49.

Li Z M. Zhang H X, Bai Z H, Li H Y. Advance in microbial pectinases research. Biotechnology bulletin, 2010(3): 42-49. (in Chinese)

[28]Kashyap D R, Vohra K, Chopra S. Applications of pectinases in the commercial sector: a review. Bioresource Technology, 2001, 77: 215-227.

[29]张进献, 李冬杰, 李宏杰. 果实软化过程中细胞壁结构和组分及细胞壁酶的变化. 河北林果研究, 2007, 22(2): 180-182, 186.

Zhang J X, Li D J, Li H J. Changes of cell wall structure, composition and hydrolytic enzymes in fruit softening process. Hebei Journal of Forestry and Orchard Research, 2007, 22(2): 180-182, 186. (in Chinese)

[30]周培根, 罗祖友, 戚晓玉, 吴邦良. 桃成熟期间果实软化与果胶及有关酶的关系. 南京农业大学学报, 1991,14(2): 33-37.

Zhou P G, Luo Z Y, Qi X Y, Wu B L. The relationship between fruit softening and changes in pectin and relative enzymes during ripening of peaches. Journal of Nanjing Agricultural University, 1991, 14(2): 33-37. (in Chinese)

[31]Carlos R F, Hernán G R, Pedro M C, Gustavo A M, Raúl H, María A, Moya-León. Changes in cell wall polysaccharides and cell wall degrading enzymes during ripening of Fragaria chiloensis and Fragaria ananassa fruits. Scientia Horticulturae, 2010, 124: 454-462.

[32]Villarreal N M, Rosli H G, Mart?´nez G A, Civello P M. Polygalacturonase activity and expression of related genes during ripening of strawberry cultivars with contrasting fruit ?rmness. Postharvest Biological and Technology, 2008, 47: 141-150.

[33]Ali M B, Abu-Goukh A-B A. Changes in pectic substances and cell wall degrading enzymes during tomato fruit ripening. University of Khartoum Journal of Agricultural Science, 2005, 13(2): 201-223.

[34]董章勇, 王 琪, 秦世雯, 王振中. 香蕉枯萎病菌1号和4号生理小种细胞壁降解酶的比较. 植物病理学报, 2010, 40(5): 463-468.

Dong Z Y, Wang Q, Qin S W, Wang Z Z. Comparison of cell wall degrading enzymes produced by Fusarium oxysporum f.sp. cubense race 1 and race 4. Acta Phytopathologica Sinica, 2010, 40(5): 463-468. (in Chinese)

[35]石延霞, 李宝聚. 刘学敏. 黄瓜霜霉病菌致病作用与两种细胞壁降解酶关系初探. 园艺学报, 2003, 30(4): 465-466.

Shi Y X, Li B J, Liu X M. The relation of pathogenesis action by Pseudoperonospora cubensis and two sort of Zymin in cucumber. Acta Horticulturae Sinica, 2003, 30(4): 465-466. (in Chinese)

[36]Oluyemisi B F, Oladimeji A, Olusegun S B. Pathogenicity and cell wall-degrading enzyme activities of some fungal isolates from cowpea (Vigna unguiculata [L] Walp). Biokemistri, 2006, 18(1): 45-51.
[1] PENG Xue,GAO YueXia,ZHANG LinXuan,GAO ZhiQiang,REN YaMei. Effects of High-Energy Electron Beam Irradiation on Potato Storage Quality and Bud Eye Cell Ultrastructure [J]. Scientia Agricultura Sinica, 2022, 55(7): 1423-1432.
[2] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[3] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[4] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[5] FAN WenJing,LIU Ming,ZHAO Peng,ZHANG QiangQiang,WU DeXiang,GUO PengYu,ZHU XiaoYa,JIN Rong,ZHANG AiJun,TANG ZhongHou. Screening of Sweetpotato Varieties Tolerant to Low Nitrogen at Seedling Stage and Evaluation of Different Nitrogen Efficiencies [J]. Scientia Agricultura Sinica, 2022, 55(10): 1891-1902.
[6] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[7] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[8] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[9] WANG Xin,LI Qiang,CAO QingHe,MA DaiFu. Current Status and Future Prospective of Sweetpotato Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492.
[10] ZHANG MengDi,YAN JunJie,GAO YuLin. The Adaptive Analysis of Phthorimaea operculella to Different Potato Tuber Varieties [J]. Scientia Agricultura Sinica, 2021, 54(3): 536-546.
[11] LI Xiang,ZHANG XiaoJiao,XIAO Chun,DONG WenXia. Electroantennogram Responses of Phthorimaea operculella of Different Sexes and Mating States to Potato Volatiles [J]. Scientia Agricultura Sinica, 2021, 54(3): 547-555.
[12] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[13] XIONG Yan,HAN Rui,HU ChunHua,WANG Jing,XIAO Chun. Influences of Chemical and Physical Stimuli on Oviposition Behavior of Phthorimaea operculella [J]. Scientia Agricultura Sinica, 2021, 54(3): 573-582.
[14] ZHAO Shan,ZHONG LingLi,QIN Lin,HUANG ShiQun,LI Xi,ZHENG XingGuo,LEI XinYu,LEI ShaoRong,GUO LingAn,FENG JunYan. Effects of Different Drying Methods on Functional Components and Antioxidant Activity in Sweet Potato Leaves [J]. Scientia Agricultura Sinica, 2021, 54(21): 4650-4663.
[15] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
Full text



No Suggested Reading articles found!