Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (21): 4377-4384.doi: 10.3864/j.issn.0578-1752.2011.21.006

• PLANT PROTECTION • Previous Articles     Next Articles

Changes of mRNA Expression of Five Defense Genes of Cotton Response to Damages Caused by Different Phytophagous Insects

 LI  Jing, ZHANG  Shuai, CUI  Jin-Jie   

  1. 1.中国农业科学院棉花研究所,河南安阳 455000
  • Received:2011-03-04 Online:2011-11-01 Published:2011-05-31

Abstract: 【Objective】The objective of this study is to understand the role of 5 defense protein genes defensing the phytophagous pests in cotton.【Method】Using the real-time quantitative PCR, the expression changes of the polyphenol oxidase (PPO), chloroplast Cu/Zn superoxide dismutase, ATP synthase β subunit, light-harvesting protein complex Ⅱ and heat shock protein (Hsp70) genes, which were damaged by Helicoverpa armigera, Spodoptera litura, Spodoptera exigua and mechanical damage for 0 (control), 6, 12, 24, 48, 60 h, respectively, were studied. 【Result】 In the 4 damage treatments, the polyphenol oxidase, heat shock protein and chloroplast Cu/Zn superoxide were stronger in response to insect feeding damage, but the light-harvesting protein complex Ⅱ was more sensitive to the mechanical damage, and ATP synthase β subunit was stronger in response to the insect feeding damage and mechanical damage. PPO responded rapidly to the H. armigera infestation, while the reaction to the S. exigua infestation was rather slowly, and without specific answer to the damage of S. litura. After 4 treatments, Hsp70 expression had a significant change, and it increased larger against the damages caused by H. armigera and S. exigua. ATP synthase β subunit was down-regulated to mechanical damage and S. litura. While after damage caused by H. armigera and S. exigua the expression was up-regulated. The light-harvesting protein complex Ⅱ was down-regulated except the damage caused by H. armigera. Chloroplast Cu/Zn superoxide was down-regulated when damaged by machine and S. litura but it up-regulated to the H. armigera and S. exigua, and it responded stronger to the damage caused by H. armigera than S. exigua.【Conclusion】The response of the cotton to different insect damages was different and with a certain specificity.

Key words: cotton, defense gene, induced responses, quantitative

[1]Singh A, Singh I K, Verma P K. Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. Journal of Experimental Botany, 2008, 59(9): 2379-2392.

[2]Schmidt D D, Voelckel C, Hartl M, Schmidt S, Baldwin I T. Attack from the samel epidopter an herbivore results in species-specific transcriptional responses in two solanaceous host plants. Plant Physiology, 2005, 138: 1763-1773.

[3]Stotz H U, Koch T, Biedermann A, Weniger K, Boland W. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta, 2002, 214: 648-652.

[4]Voelckel C, Baldwin I T. Generalist and specialist lepidopteron l  arvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecology Letters, 2004, 7: 770-775.

[5]De Vos M, Van Oosten V R, Van Poecke R M P, Van Pelt J A, Pozo M J, Mueller M J, Buchala A J, Métraux J-P, VanLoon L C, Dicke M, Pieterse C M J. Signal signature and transcriptase changes of Arabidopsis during pathogen and insect attack. Molecular Plant-Microbe Interactions, 2005, 18(9): 923-937.

[6]Broekgaarden C, Poelman E H, Steenhuis G, Voorrips R E, Dicke M, Vosman B. Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleracea-Pieris rapae interactions. BMC Genomics, 2007, 8: 239.

[7]胡根海,  喻树迅. 利用改良的CTAB 法提取棉花叶片总RNA. 棉花学报, 2007, 19(1): 69-70.

Hui G H, Yu S X. Extraction of high-quality total RNA in cotton leaf with improved CTAB method. Cotton Science, 2007, 19(1): 69-70. (in Chinese)

[8]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25: 402-408.

[9]Pinto M S T, Siqueira F P, Oliveira A E A, Fernandes K V S. A wounding-induced PPO from cowpea (Vigna unguiculata) seedlings. Phytochemistry, 2008, 69: 2297-2302.

[10]Thipyapong P, Hunt M D, Steffens J C. Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry, 1995, 40(3): 673-676.

[11]Constabel C P, Bergey D R, Ryan C A. Systemic activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 407-411.

[12]Constabel C P, Ryan C A. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry, 1998, 47(4): 507-511.

[13]Thaler J S, Karban R, Ullman D E, Boege K, Bostock R M. Cross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia, 2002, 131: 227-235.

[14]宗  娜, 王琛柱. 三种夜蛾科昆虫对烟草烟碱的诱导及其与昆虫下唇腺葡萄糖氧化酶的关系. 科学通报, 2004, 49(14): 1380-1385.

Zong N, Wang C Z. Induction of nicotine in tobacco insect labial gland relationship between glucose oxidase of three noctuid. Science Bulletin, 2004, 49 (14): 1380-1385. (in Chinese)

[15]Paré P W, Tumlinson J H. Plant volatiles as a defence against insect herbivore. Plant Physiology, 1999, 121: 325-331.

[16]Girling R D, Stewart-Jones A, Dherbecourt J, Staley J T, Wright D J, Poppy G M. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proceedings of the Royal Society B, 2011, doi: 10.1098/ rspb.2010.2725.

[17]颜增光, 阎云花, 王琛柱. 棉铃虫和烟青虫取食诱导的烟草挥发物吸引棉铃虫齿唇姬蜂. 科学通报, 2005, 50(12): 1220-1227.

Yan Z G, Yan Y H, Wang C Z. Helicoverpa armigera and Heliothis assulta Guenee feeding induced tobacco volatiles attract Campoletis chlorideae Uchida. Science Bulletin, 2005, 50(12): 1220-1227. (in Chinese)

[18]秦  佳, 杨金莹, 伊淑莹, 刘  箭. 热激蛋白对细胞凋亡的调节作用. 生命科学, 2007, 19(2): 159-163.

Qin J, Yang J Y, Yin S Y, Liu J. Heat shock protein in the regulation of apoptosis. Chinese Bullentin of Life Science, 2007, 19(2): 159-163. (in Chinese)

[19]Hatayama Tyamagishi N, Minobe E, Sakal K. Role of hsp105 in protection against stress-induced apoptosis in neuronal PC12 cells. Biochemical and Biophysical Research Communications, 2001, 288(3): 528-534.

[20]葛菁华, 陈海燕, 赵福利. 不同聚集态捕光色素蛋白复合物的超快光谱特性研究. 中山大学学报: 自然科学版, 2007, 46(Suppl.2): 61-64.

Ge J H, Chen H Y, Zhao H L. Study on ultrafast spectral characteristics of spinach light-harvesting complexⅡof various aggregations. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(Suppl.2): 61-64. (in Chinese)

[21]韦振泉, 林宏辉, 何军贤, 梁厚果. 水分胁迫对小麦捕光色素蛋白复合物的影响. 西北植物学报, 2000, 20(4): 555-560.

Wei Z Q, Lin H H, He J X, Liang H G. Effects of water stress on the light-harvesting complexes in wheat leaves. Acta Botany Boreal-Occident Sinica, 2000, 20(4): 555-560. (in Chinese)

[22]He J X, Wang J, Liang H G. Effect of water stress on photochemical function and protein metabolism of photo systemⅡin wheat leaves. Physiological Plant, 1995, 93: 771-777.

[23]Zhang C, Shi H, Chen L, Wang X, Lü B, Zhang S, Liang Y, Liu R, Qian J, Sun W, You Z, Dong H. Harpin-induced expression and transgenic over expression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biology, 2011, 11:11.

[24]王琛柱, 钦俊德. 昆虫与植物的协同进化: 寄主植物-铃夜蛾-寄生蜂相互作用. 昆虫知识, 2007, 44(3): 311-331.

Wang C Z, Qin J D. Insect-plant co-evolution: multitrophic interactions concerning Helicoverpa species. Chinese Bulletin of Entomology, 2007, 44(3): 311-331. (in Chinese)

[25]Ehrlich P R, P H Raven. Butterflies and plants: a study in coevolution. Evolution, 1964, 18(4): 586-608.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[6] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[7] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[8] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[9] LI XiaoJing,ZHANG SiYu,LIU Di,YUAN XiaoWei,LI XingSheng,SHI YanXia,XIE XueWen,LI Lei,FAN TengFei,LI BaoJu,CHAI ALi. Establishment and Application of Rapid Quantitative Detection of Viable Plasmodiophora brassicae by PMAxx-qPCR Method [J]. Scientia Agricultura Sinica, 2022, 55(10): 1938-1948.
[10] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[11] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[12] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[13] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[14] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[15] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!