Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (19): 4029-4036.doi: 10.3864/j.issn.0578-1752.2011.19.013

• HORTICULTURE • Previous Articles     Next Articles

Molecular Cloning of Isopentenyl Transferases Genes Family in Malus domestica Borkh. and a Preliminary Functional Analysis of MdIPT5a

 LI  Hao, ZHANG  Wen, ZHAO  Xu-Mian, REN  Xue-Qin, ZHU  Yuan-Di   

  1. 1.中国农业大学果树系
  • Received:2011-04-11 Online:2011-10-01 Published:2011-05-17

Abstract: 【Objective】The aim of this study was to clone a multigene family encoding isopentenyl transferases in Malus domestica, and analyze the biological functions of MdIPT5a, which would provide a basis for in-depth studies of the functions of MdIPTs in cytokinin biosynthesis and genetic transformation. 【Method】The MdIPTs were isolated from apple cultivar ‘Fuji’ by RACE based on the information of apple genome. The subcellular localization of MdIPT5a was transient expressed in onion epidermal cells by the particle bombardment method and in Arabidopsis mesophyll protoplast by the PEG-calcium transfection. MdIPT5a was transferred into tobaccos (Nicotiana tabacum cv. Wisconsin 38) by Agrobacterium-mediated transformation. Transgenic tobaccos were examined by RT-PCR. 【Result】Ten cDNA sequences of MdIPTs were isolated from apple. Among them seven sequences encoding adenylate isopentenyl transferases that functioned in the major pathway of cytokinin biosynthesis shared a conserved domain of GxxGxGK[S, T] motif at N-teminal, and were located in chromosome No. 13, 16, 3, 11, 13, 16 and 6 respectively. They were designated as MdIPT1a, MdIPT1b, MdIPT3a, MdIPT3b, MdIPT5a, MdIPT5b and MdIPT7a. These genes encoded 284 to 370 amino acids without introns. The MdIPT5a-GFP fusion proteins were located in cytoplasm, but not in plastids. Overexpression of MdIPT5a in tobaccos in vitro induced the phenotypes of hardly rooting with more leaves and adventitious shoots. 【Conclusion】 The phenomenon that genes in pairs performed highly homologous occurred in MdIPTs, which was accordant with the theory that 17 chromosomes in the Pyreae were derived from nine ancestral chromosomes. MdIPT5a exhibited the catalytic function in cytokinin biosynthesis.

Key words: apple, cytokinin, isopentenyltransferase, subcellular localization, genetic transformation

[1]Haberer G, Kieber J J. Cytokinins, new insights into a classic phytohormone. Plant Physiology, 2002, 128: 354-362.

[2]Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annual Review of Biochemistry, 2006, 57: 431-449.

[3]Brugiere N, Humbert S, Rizzo N, Bohn J, Habben J E. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Molecular Biology, 2008, 67: 215-229.

[4]Watanabe M, Suzuki A, Komori S, Bessho H. Comparison of endogenous IAA and cytokinins in shoots of columnar and normal type apple trees. Journal of the Japanese Society for Horticultural Science, 2004, 73: 19-24.

[5]Kamada-Nobusada T, Sakakibara H. Molecular basis for cytokinin biosynthesis. Phytochemestry, 2009, 70: 444-449.

[6]Hammerschlag F A, McCanna I J, Smigocki A C. Characterization of transgenic peach plants containing a cytokinin biosynthesis gene. Acta Horticulturae, 1997, 447: 569-574.

[7]袁  政, 潘爱虎, 简志英, 徐淑平, Gan S S, 黄海, 张大兵. 转基因(SAG12-IPT)青菜的迟衰特性. 植物生理与分子生物学学报, 2002, 28: 379-384.

[8]Barry G F, Rogers S G, Fraley R T, Brand L. Identification of a cloned cytokinin biosynthetic gene. Proceedings of the National Academy of Science of the USA, 1984, 81: 4776-4780.

[9]Akiyoshi D E, Klee H, Amasino R M, Nester E W, Gordon M P. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the National Academy of Science of the USA, 1984, 81:5994-5998.

[10]Takei K, Sakakibara H, Sugiyama T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. Journal of Biological Chemistry, 2001, 276: 26405-26410.

[11]Kakimoto T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant and Cell Physiology, 2001, 42: 677-685.

[12]Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiology, 2006, 142: 54-62.

[13]Sakano Y, Okada Y, Matsunaga A, Suwama T, Kaneko T, Ito K, Noguchi H, Abe I. Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.). Phytochemestry, 2004, 65: 2439-2446.

[14]Ye C J, Wu S W, Kong F N, Zhou C J, Yang Q K, Sun Y, Wang     B. Identification and characterization of an isopentenyltransferase (IPT) gene in soybean (Glycine max L.). Plant Science, 2006, 170: 542-550.

[15]Peng J, Peng F T, Zhu C F, Wei S C. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus Hupehensis) and characterization of its response to nitrate. Tree Physiology, 2008, 28: 899-904.

[16]Miyawaki K, Matsumoto-Kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant Journal, 2004, 37: 128-138.

[17]Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiology, 2004, 45: 1053-1062.

[18]Miyawaki K, Tarkowski P, Matsumoto-kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T. Roles of Arabidopsis ATP/ADP isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Science of the USA, 2006, 103: 16598-16603.

[19]邓  岩, 王兴春, 杨淑华, 左建儒. 细胞分裂素: 、信号转导、交叉反应与农艺性状改良. 植物学通报, 2006, 23: 478-498.

[20]Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 2008, 59: 75-83.

[21]Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H. Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. Journal of Biological Chemistry, 2004, 279: 14049-14054.

[22]Zubko E, Adams C J, Machaekova I, Malbeck J, Scollan C, Meyer P. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant Journal, 2002, 29: 797-808.

[23]Chang H, Jones M L, Banowetz G M, Clark D G. Overproduction of cytokinins in Petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology, 2003, 132: 2174-2183.

[24]Guivarch A, Rembur J, Goetz M, Roitsch T, Noin M, Schmuelling T, Chriqui D. Local expression of the ipt gene in transgenic tobacco (Nicotiana tabacum L. cv. SR1) axillary buds establishes a role for cytokinins in tuberization and sink formation. Journal of Experimental Botany, 2002, 3: 621-629.

[25]Li Y, Hagen G, Guilfoyle T J. Altered morphology in transgenic tobacco plants that overproduce cytokines in specific tissues and organs. Developmental Biology, 1992, 153: 386-395.

[26]Robson P, Donnison S, Wang K, Frame B, Pegg S E, Thomas A, Thomas H. Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnology Journal, 2004, 2: 101-112.

[27]Trifonova A, Savova D, Ivanova K. Agrobacterium-mediated transformation of the apple cultivar Granny Smith. Progress in Temperate Fruit Breeding, 1994: 343-347

[28]Velasco R, Zharkikh A, Affourtit J, Dhingra A. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 2010, 42: 833-839.

[29]Yoo S D, Cho Y E, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2: 1565-1572.

[30]Foster T, Kirk C, Jones W T, Allan A C, Espley R, Karunairetnam S, Rakonjac J. Characterisation of the DELLA subfamily in apple (Malus×domestica Borkh.). Tree Genetics and Genomes, 2007, 3: 187-197.

[31]Cheikh N, Jones R J. Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiology, 1994, 106: 45-51
[1] LI XuFei,YANG ShengDi,LI SongQi,LIU HaiNan,PEI MaoSong,WEI TongLu,GUO DaLong,YU YiHe. Analysis of VlCKX4 Expression Characteristics and Prediction of Transcriptional Regulation in Grape [J]. Scientia Agricultura Sinica, 2023, 56(1): 144-155.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[4] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[5] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[6] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[7] GAO XiaoQin,NIE JiYun,CHEN QiuSheng,HAN LingXi,LIU Lu,CHENG Yang,LIU MingYu. Geographical Origin Tracing of Fuji Apple Based on Mineral Element Fingerprinting Technology [J]. Scientia Agricultura Sinica, 2022, 55(21): 4252-4264.
[8] ZHANG Rui,ZHANG XueYao,ZHAO XiaoMing,MA EnBo,ZHANG JianZhen. Antibody Preparation and Subcellular Localization of LmKnk3-5′ in Locusta migratoria [J]. Scientia Agricultura Sinica, 2022, 55(2): 329-338.
[9] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[10] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[11] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[12] SONG BoWen,YANG Long,PAN YunFei,LI HaiQiang,LI Hao,FENG HongZu,LU YanHui. Effects of Agricultural Landscape on the Population Dynamic of Grapholitha molesta Adults in Apple Orchards in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(1): 85-95.
[13] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[14] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[15] LI ZiTeng,CAO YuHan,LI Nan,MENG XiangLong,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Molecular Variation and Phylogenetic Relationship of Apple Scar Skin Viroid in Seven Cultivars of Apple [J]. Scientia Agricultura Sinica, 2021, 54(20): 4326-4336.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!