Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (18): 3701-3708.doi: 10.3864/j.issn.0578-1752.2011.18.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Application of High-Resolution Melting Curve Analysis for Molecular Marker Genotyping in Rice

ZHAO  Jun-Liang, ZHANG  Shao-Hong, LIU  Bin   

  1. 1. 广东省农业科学院水稻研究所
  • Received:2011-01-12 Revised:2011-03-08 Online:2011-09-15 Published:2011-09-15

Abstract: 【Objective】 In order to test the feasibility and reliability of high-resolution melting curve analysis (HRM) for molecular marker genotyping in rice crop, SSR, InDel and SNP genotyping of a rice recombinant inbred line (RIL) population and their parents were conducted using HRM. 【Method】 A japonica cultivar Lijiangxintuanheigu (LTH), an indica cultivar Sanhuangzhan 2 (SHZ-2) and their derived RIL populations were used. The amplicons of the two molecular markers, a SSR marker and an InDel marker, which could not be differentiated by non-denaturing polyacrylamide gels electrophoresis (PAGE), and the amplicons of a G/A transition SNP marker, were subjected to HRM analysis. The reference homozygous DNA from LTH was added before PCR. 【Result】 By adding reference DNA, the heterozygous and two different homozygous genotypes generated from SSR, InDel and SNP, respectively, could be distinguished by HRM. The best discrimination for the three genotypes was given when the amount of reference DNA was equal to 20% template DNA. The genotypes of two parents and their derived RI lines based on HRM were perfectly consistent with those based on denaturing PAGE. 【Conclusion】 HRM can be used for SSR, InDel and SNP genotyping in rice. Comparing with PAGE, HRM has the advantages of high resolution, high through-put, simplicity and safety. It is a promising technology for molecular marker analysis in rice.

Key words: rice, SSR, Indel, SNP, HRM

[1]Wittwer C T. High-resolution DNA melting analysis: Advancements and limitations. Human Mutation, 2009, 30(6): 857-859.

[2]Ririe K M, Rasmussen R P, Wittwer C T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, 1997, 245(2): 154-160.

[3]Lipsky R H, Mazzanti C M, Rudolph J G, Xu K, Vyas G, Bozak     D, Radel M Q, Goldman D. DNA melting analysis for detection of single nucleotide polymorphisms. Clinical Chemistry, 2001, 47(4): 635-644.

[4]Wittwer C T, Reed G H, Gundry C N, Vandersteen J G, Pryor R J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry, 2003, 49(6): 853-860.

[5]Reed G H, Wittwer C T. Sensitivity and specificity of single- nucleotide polymorphism scanning by high-resolution melting analysis. Clinical Chemistry, 2004, 50(10): 1748-1754.

[6]Nomoto K, Tsuta K, Takano T, Fukui T, Yokozawa K, Sakamoto H, Yoshida T, Maeshima A M, Shibata T, Furuta K, Ohe Y, Matsuno Y. Detection of EGFR mutations in archived cytologic specimens of non–small cell lung cancer using high-resolution melting analysis. American Journal of Clinical Pathology, 2006, 126: 608-615.

[7]Mackay J F, Wright C D, Bonfiglioli R G. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: Application to the verification of grapevine and olive cultivars. Plant Methods, 2008, 4: 8. doi: 10. 1186/1746-4811-4-8.

[8]Lehmensiek A, Sutherland M W, McNamara R B. The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theoretical and Applied Genetics, 2008, 117(5): 721-728.

[9]Wu S B, Franks T K, Hunt P, Wirthensohn M G, Gibson J P, Sedgley M. Discrimination of SNP genotypes associated with complex haplotypes by high resolution melting analysis in almond: implications for improved marker ef?ciencies. Molecular Breeding, 2010, 25(2): 351-357.

[10]Hofinger B J, Jing H C, Hammond-Kosack K E, Kanyuka K. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theoretical and Applied Genetics, 2009, 119(5): 851-865.

[11]Dellaporta S L, Wood J, Hicks J B. A plant DNA mini preparation: version II. Plant Molecular Biology Reporter, 1983, 1(4): 19-21.

[12]Liu B, Zhang S H, Zhu X Y, Yang Q Y, Wu S Z, Mei M T, Mauleon R, Leach J, Mew T, Leung H. Candidate defense genes as predictors of quantitative blast resistance in rice. Molecular Plant-Microbe Interactions, 2004, 17(10): 1146-1152.

[13]Ma C R, Naredo E B, Wang H H, Atienza G, Liu B, Qiu F L, McNally K L, Leung H. Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Molecular Breeding, 2007, 19(2): 87-101.

[14]温立斌, 何孔旺, 杨汉春, 郭容利, 钟书霖, 周俊明, 李成仁, 陈梦海. 应用高分辨熔点曲线分析区分类猪圆环病毒因子P1和猪圆环病毒2型. 江苏农业学报, 2010, 26(2): 315-319.

Wen L B, He K W, Yang H C, Guo R L, Zhong S L, Zhou J M, Li C R, Chen M H. High-resolution melting analysis for differentiating porcine circovirus-like AgentP1 and porcine circovirus type 2. Jiangsu Journal of Agricultural Science, 2010, 26(2): 315-319. (in Chinese)

[15]Erali M, Palais R, Wittwer C T. SNP genotyping by unlabeled probe melting analysis//Marx A, Seitz O. Molecular Beacons: Signalling Nucleic Acid Probes, Methods, and Protocols. Totowa, N J: Humana Press Inc, 2008: 199-206.

[16]Maat W, van der Velden P A, Out-Luiting C, Plug M, Dirks-Mulder A, Jager M J, Gruis N A. Epigenetic inactivation of RASSF1a in uveal melanoma. Investigative Ophthalmology and Visual Science, 2007, 48(2): 486-490.

[17]Aten E, White S J, Kalf M E, Vossen R H, Thygesen H H, Ruivenkamp C A, Kriek M, Breuning M H B, den Dunnen J T. Methods to detect CNVs in the human genome. Cytogenetic and Genome Research, 2008, 123: 313-321.

[18]Vossen R, Aten E, Roos A, den Dunnen J T. High-Resolution Melting Analysis (HRMA), more than just sequence variant screening. Human Mutation, 2009, 30(6): 860-866.

[19]Shirasawa1 K, Monna L, Kishitani1 S, Nishio T. Single nucleotide polymorphisms in randomly selected genes among japonica rice (Oryza sativa L.) varieties identified by PCR-RF-SSCP. DNA Research, 2004, 11(4): 275-283.

[20]Gibson N L. The use of real-time PCR methods in DNA sequence variation analysis. Clinica Chimica Acta, 2006, 363(1): 32-47.

[21]Pusch W , Wurmbach J H , Thiele H , Kostrzewa M. MALDI-TOF mass spectrometry-based SNP genotyping. Pharmacogenomics, 2002, 3(4): 537-548.

[22]Liew M A, Pryor R A, Palais R, Meadows C, Erali M, Lyon E, Wittwer C T. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clinical Chemistry, 2004, 50(7): 1156-1164.

[23]Palais R A, Liew M A, Wittwer C T. Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping. Analytical Biochemistry, 2005, 346(1): 167-175.

[24]Ye M H, Chen J L , Zhao G P, Zheng M Q, Wen J. Sensitivity and specificity of high-resolution melting analysis in screening unknown SNPs and genotyping a known mutation. Animal Science Papers and Reports, 2010, 28(2): 161-170.

[25]Li Y D, Chu Z Z, Liu X G, Jing H C, Liu Y G, Hao D Y. A Cost-effective high-resolution melting approach using the EvaGreen dye for DNA polymorphism detection and genotyping in plants. Journal of Integrative Plant Biology, 2010, 52(12): 1036-1042.
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[3] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[4] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[5] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[6] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[10] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[11] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[12] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[13] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[14] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[15] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!