Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (15): 3086-3097 .doi: 10.3864/j.issn.0578-1752.2011.15.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Assessment of Substitution Lines and Identification of QTL Related to Fiber Yield and Quality Traits in BC4F2 and BC4F3 Populations from G.hirsutum ×G.barbadense

LAN  Meng-Jiao, YANG  Ze-Mao, SHI  Yu-Zhen, GE  Rui-Hua, LI  Ai-Guo, ZHANG  Bao-Cai, LI  Jun-Wen, SHANG  Hai-Hong, LIU  Ai-Ying, WANG  Tao, YUAN  You-Lu   

  1.  中国农业科学院棉花研究所/农业部棉花遗传改良重点实验室
  • Received:2010-12-27 Revised:2011-03-02 Online:2011-08-01 Published:2011-03-14
  • Contact: Meng-Jiao LAN E-mail:lanmj100@163.com

Abstract: 【Objective】 A total of 276 SSR makers were used to assess the substitution lines and identify the QTLs related to fiber yield and quality traits in BC4F2 and BC4F3 populations from Gossypium hirsutum ×Gossypium barbadense with Gossypium hirsutum as recurrent parent, which could lay a foundation for further screening SSSLs (single segment substitution lines) , finely mapping QTL of fiber yield and quality-related traits and realizing molecular assistant breeding. 【Method】 GGT32 was employed to analyze the genotype of BC4F2 and BC4F3 individuals. Possible QTL were identified by one-way analysis of variance on SAS PROC GLM. 【Result】 A total of 50 SSSLs were detected in BC4F2 and BC4F3 individual populations, in which 9 plants contained the single homozygosis chromosome segment of Gossypium barbadense. Twelve plants were screened out with excellent fiber quality trait and a few chromosome segments from Gossypium barbadense. Fifteen QTLs for fiber yield-related traits and 19 QTLs for fiber quality-related traits were mapped in twelve linkage groups, which accounted for 2.80%-14.13% of phenotypic variance. 【Conclusion】 This study indicated that 4 QTLs related to fiber length could be detected in the two populations and 1 QTL for fiber length was reported in previous research, pleiotropism or linked genes existed in some loci that controlled different traits, and not all of additive genes were from the parent with excellent traits.

Key words: G.hirsutum cotton, G.barbadense cotton, Chromosome segment substitution lines, QTL, Fiber yield , Fiber quality traits

[1]杨伟华, 项时康, 唐淑荣, 熊宗伟, 胡育昌. 20年来我国自育棉花品种纤维品质分析. 棉花学报, 2001, 13(6): 377-384.

Yang W H, Xiang S K, Tang S R, Xiong Z W, Hu Y C. Analysis on fiber quality of the cotton varieties released in the last 20 years in China. Cotton Science, 2001, 13(6): 377-384. (in Chinese) 

[2]张香桂, 周宝良, 陈  松, 张震林. 陆地棉与海岛棉种间杂种优势研究. 江西棉花, 2003(5): 25-30.

Zhang G X, Zhou B L, Chen S, Zhang Z L. Research of heterosis between G. hisutum and G. bardadense. Jiang Xi Cottons, 2003(5): 25-30. (in Chinese)

[3]He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Feng C D, James M S. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica, 2005, 144: 141-149.

[4]Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99.

[5]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006, 152: 367-378.

[6]Rong J K, Feltus A F, Waghmare V N, Pierce W C, Draye X, Saranga Y, Wright R J, Wilkins T H, May O L, Smith C Y, Gannaway J R, Wendel J F, Paterson A H. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to acomplex network of genes and gene clusters implicated in lint fiber development. Genetics, 2007, 176: 2577-2588.

[7]Eshed Y, Zamir D. A genomic library of Lycopersion pennellii in L. esculentum: A tool for fine mapping of genes. Euphytica, 1994, 79(3): 175-179.

[8]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162.

[9]Zhu W Y, Lin J, Yang D W. Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Plant Molecular Biology, 2009, 27: 126-131.

[10]翁建峰, 万向元, 吴秀菊, 王海莲, 翟虎渠, 万建民. 利用CSSL群体研究稻米AC和PC相关QTL表达稳定性. 作物学报, 2006, 32(1): 14-19.

Weng J F, Wan X Y, Wu X J, Wang H L, Zhai H Q, Wan J M. Stable expression of QTL for AC and PC of milled rice (Oryza sativa L.) using a CSSL population. Acta Agronomica Sinica, 2006, 1: 14-19. (in Chinese)

[11]王  鹏, 丁掌业, 陆琼娴, 郭旺珍, 张天真. 陆地棉遗传标准系TM-1背景的海岛棉染色体片段置换系的培育. 科学通报,2008, 53(9): 1065-1069.

Wang P, Ding Z Y, Lu Q X, Guo W Z, Zhang T Z. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chinese Science Bulletin, 2008, 53(9): 1065-1069. (in Chinese)

[12]Wu J X, Jenkins J N, Mccarty J C, Saha S, Percy R. Genetic association of lint yield with its components in cotton chromosome substitution lines. Euphytica, 2008, 164(1): 199-207.

[13]朱亚娟, 王  鹏, 郭旺珍, 张天真. 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010, 36(8): 1318-1323.

Zhu Y J, Wang P, Guo W Z, Zhang T Z. Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agronomica Sinica, 2010, 36(8): 1318-1323. (in Chinese)

[14]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic. Plant Molecular Biology Reporter, 1993, 11(2): 122-127.

[15]张保才. AB-QTL法定位海岛棉优异纤维品质基因和抗黄萎病基因[D]. 北京: 中国农业科学院, 2006.

Zhang B C. QTL analysis of fiber quality and resistance to verticillium wilt using G. Hirsutum ×G. Barbadense backcross populations[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)

[16]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schlze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin D W, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417.

[17]Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 2002, 53: 13-25.

[18]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theoretical and Applied Genetics, 2005, 111(8): 1642-1650.

[19]梁  燕. 早熟陆地棉染色体片段代换系的构建及QTL初步定位[D]. 北京: 中国农业科学院, 2010.

Liang Y. Construction of chromosome segment substitution lines and primary QTL mapping in early-maturing upland cotton[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese)

[20]杨泽茂. 陆地棉染色体片段代换系的构建及QTL定位初探[D]. 长

 

沙: 湖南农业大学, 2009.

Yang Z M. Developing chromosome segment substitution lines and primary identification of QTL in upland cotton (G. hirsutum) [D]. Changsha: Hu’nan Agricultual University, 2009. (in Chinese)

[21]Kubo T, Nakamura K, Yoshimura A. Development of a series of indica chromosome segment substitution lines in japonica background of rice. Rice Genet Newsletter, 1999, 16: 104-105.

[22]Doi K, Iwata N, Yoshlmura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O. sativa L1). Rice Genet Newsletter, 1997, 14: 39-41.

[23]刘冠明, 李文涛, 曾瑞珍, 张泽民, 张桂权. 水稻亚种间单片段代换系的建立. 中国水稻科学, 2003, 17(3): 201-204.

Liu G M, Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chinese Journal of Rice Science, 2003, 17(3): 201-204. (in Chinese)

[24]赵永锋. 玉米单片段导入系群体的构建及QTL鉴定初探[D]. 保定: 河北农业大学, 2006.

Zhao Y F, Development of single segment introgression lines and primayry identification of QTLs in maze (Zea myas L.) [D]. Baoding: Hebei Agricultural university, 2006. (in Chinese)

[25]张书红. 玉米单片段代换系群体的构建和玉米矮花叶病抗病基因的定位[D]. 郑州: 河南农业大学, 2007.

Zhang S H. Development of a series of chromosome single segment substitution lines of maize and mapping of a new resistance gene to sugarcane mosaie virus using microsatellite markers[D]. Zhengzhou: He’nan Agricultural university, 2007. (in Chinese)

[26]靖深蓉, 占先合. 显性无腺体陆地棉(G.hirsutum L.)新类型的选育. 中国农业科学, 1990, 23(4): 22-27.

Jing S R, Zhan X H. Selection of new types of dominant glandless cotton (G. hirsutum) germplasm. Scientia Agricultura Sinica, 1990, 23(4): 22-27. (in Chinese)

[27]Ulloa M, Meredith J W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. Journal of Cotton Science, 2000, 4: 161-170.

[28]Lacape J M, Nguyen T B, Courtois B. QTL Analysis of cotton fiber quality using multiple Gossypium hirsutum×Gossypium barbadense backcross generations. Crop Science, 2005, 45: 123-140.

[29]Shen X L, Guo W Z, Lu Q X, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiberquality and yield trait by RIL approach in upland cotton. Euphytica, 2007, 155(3): 371-380.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[11] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[12] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[13] LUO JiangTao,ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun. The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives [J]. Scientia Agricultura Sinica, 2021, 54(20): 4255-4264.
[14] WANG Ling,CAI Yi,WANG GuiChao,WANG Di,SHENG YunYan. Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206.
[15] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!