Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4196-4206.doi: 10.3864/j.issn.0578-1752.2021.19.014

• HORTICULTURE • Previous Articles     Next Articles

Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon

WANG Ling1(),CAI Yi1,WANG GuiChao1,WANG Di2,SHENG YunYan1()   

  1. 1College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang
    2Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163319, Heilongjiang
  • Received:2020-11-25 Accepted:2021-03-16 Online:2021-10-01 Published:2021-10-12
  • Contact: YunYan SHENG E-mail:wlbynd@163.com;shengyunyan@byau.edu.cn

Abstract:

【Objective】 Through the QTL mapping and candidate gene analysis of muskmelon (Cucumis melo L.) fruit-related traits, so as to provide a theoretical basis for muskmelon quality breeding, gene mapping and functional verification. 【Method】 The F1 plant was made cross by 1244 as female parent with thin-skinned melon and M5 with thick-skinned melon as male parent, combined with SFLA sequencing technology to develop molecular tags and construct high-density genetic maps. Based on F2:3 phenotype data, Mapqtl analysis method was used to detect QTL location. 【Result】 Totally 380 446 Mreads (83.12 Gb) data were obtained, the average Q30 and GC content was 93.59% and 36.87%, respectively; totally 112 844 SLAF tags and 3 274 879 SNPs were obtained; a genetic map contained 12 linkage groups with a total of 10 596 markers were constructed. The genetic map spanned 1 383.88 cM with the average distance was 0.13 cM between markers, and totally 99.92% developed markers were mapped. The gene controling fruit sutures (fst) of melon was located at the end of chromosome 11, between Marker 1993423 (62.18) and Marker 1998820 (63.05), covering 0.72 Mb of the genome, and containing 33 candidate genes. The gene for pericarp pattern (fpp) was located at chromosome 2 between Marker 459584 (90.91) and Marker 459446 (90.91) which covered the genome of 0.08 Mb and contained 5 candidate genes, among them MELO3C026292 (1-deoxy-D-xylulose-5-phosphate reductoisomerase) might be the candidate gene for pericarp pattern. At the same time, QTL locus of pericarp color (fpc) was detected which located between Marker 1229174 (7.14) and Marker 1229973 (7.14) on the chromosome 7, with the contribution rate was 9.9%. One QTL locus of fruit shape (fs) fs9.1 was detected between Marker 1705671 (76.19) and Marker 1705915 (79.23) on chromosome 9 with a contribution rate of 7.6%. Six QTL loci related to single fruit weight (sfw1.1, sfw2.1, sfw2.2, sfw6.1, sfw7.1, sfw10.1) were detected on chromosomes 1, 2, 6, 7, and 10 with the contribution rate were between 3.1% to 17%, and the LOD value were between 3.0 to 5.6. 【Conclusion】The fruit sutures and pericarp pattern genes were located on the chromosomes11 and 2, and then 33 and 5 candidate genes were obtained, respectively; One QTL for pericarp color, one QTL for fruit shape and 6 QTLs for single fruit weight were also detected.

Key words: melon, SLAF sequencing, genetic map construction, fruit related traits, QTL analysis

Fig. 1

Performance of parental lines and F2 individuals"

Table 1

Segregation ratio of fruit rind traits"

世代
Generation
单株数
Plant number
果面沟表型分离比率
Ratio of fruit sutures
期望比率
Exception ratio
卡方值
χ2
果皮花纹分离比率
Ratio of pericarp pattern
期望比率
Exception ratio
卡方值
χ2
P1 30 30(有 With) 0(无 Without)
P2 30 0(无 Without) 30(有 With)
F1 30 30(全有 All) 30(有 With)
F2 242 145﹕50
(有﹕无With﹕Without)
3﹕1 0.015 152﹕43
(有﹕无With﹕Without)
3﹕1 0.381
BC1P1 150 30(有 With) 30(有 With)
BC1P2 150 76﹕74
(有﹕无With﹕Without)
1﹕1 0.131 81﹕69
(有﹕无With﹕Without)
1﹕1 0.488

Fig. 2

Distribution of single fruit weight, fruit shape and pericarp color for F2 population and parents in melon"

Table 2

Quantity analysis of sequencing sample"

样品名称
Sample ID
序列数
Total reads
碱基数
Total base
测序质量≥30 的碱基数所占百分数
Q30 (%)
G、C 所占总碱基的百分数
GC (%)
1244 38911978 11653958274 92.31 37.01
M5 31878110 9548013962 92.67 36.72
F2 群体 F2 population 2692579 538400027 95.81 36.88
对照 Control 1188503 237656096 96.33 40.87
总量 Total 380446747 83117975446 93.59 36.87

Table 3

Comparison of sequencing data and SNP"

样本
Sample
比对序列数占比
Mapped (%)
测序序列比对参考基因组占比
Properly_mapped (%)
SNP数量
SNP Number
杂合SNP数量
Number of Heter-SNP
纯合SNP数量
Number of Homo-SNP
杂合率
Heter ratio (%)
1244 97.39 90.44 2 250 862 282 705 1 968 157 12.55
MS5 96.56 89.08 1 489 767 146 401 1 343 366 9.82
F2 97.97 92.50 806 865 60 289 211 029 22.19

Table 4

Genetic map construction using SLAF sequencing"

染色体
LG
标记数
Number of markers
Gap<5 cM比值
Gap<5 cM ration (%)
秩相关系数
Spearman
最大Gap
Max Gap (cM)
总图距
Total distance (cM)
平均图距
Average distance (cM)
1 1267 100.00 0.987 1.74 110.2 0.09
2 504 99.80 0.994 9.33 98.74 0.2
3 1363 100.00 0.989 4.97 111.19 0.08
4 901 100.00 0.995 1.83 138.63 0.15
5 875 100.00 0.992 2.18 94.2 0.11
6 1070 100.00 0.963 3.57 125.08 0.12
7 300 99.00 0.995 6.84 112.25 0.37
8 1104 100.00 0.984 1.83 127.49 0.12
9 649 99.69 0.996 7.98 96.19 0.15
10 591 100.00 0.965 3.05 135.64 0.23
11 1579 100.00 0.982 2.17 137.24 0.09
12 393 99.74 0.996 10.75 97.03 0.25
共计 Total 10596 99.85 0.986 10.75 1383.88 0.13

Fig. 3

Genetic map construction and QTL analysis and gene location Pericarp pattern;fs:果型指数 Fruit shape;fst:果面沟 Fruit sutures"

Fig. 4

QTL analysis and candidate gene analysis"

Table 5

QTL analysis and gene location of fruit related traits in maskmelon"

性状
Traits
QTL位点
QTL position
LOD值LOD threshold 染色体Group
ID
起始位点
Start
(cM)
基因组
位置 Position
结束位点
End
(cM)
基因组
位置Position
峰值 Max LOD 加性
效应ADD
显性
效应DOM
贡献率
PVE (%)
候选基因数Candidate gene number
果型指数
Fruit shape (fs)
fs9.1 3.0 9 Marker 1705671 (76.19) 23034060 Marker 1705915 (79.23) 23259152 5.91 0.19 0.05 7.6 23
单果重
Single fruit weight (sfw)
sfw1.1 3.0 1 Marker 297654 (91.06) 34295745 Marker 298408 (91.49) 34435727 3.3 -28.38 -22.21 8.3 17
sfw2.1 3.0 2 Marker 316077 (18.35) 1626517 Marker 316123 (18.35) 1635504 3.0 17.81 -8.88 3.1 1
sfw2.2 3.0 2 Marker 414271 (60.38) 18344184 Marker 413648 (60.82) 18881371 5.6 -45.10 -13.59 17.0 15
sfw6.1 3.0 6 Marker 1186096 (74.87) 30841187 Marker 1186721 (74.89) 38291645 4.2 -21.93 34.30 10.2 354
sfw7.1 3.0 7 Marker 1254170 (34.54) 4758046 Marker 1255749 (34.97) 7547788 3.2 -25.56 8.55 5.9 113
sfw10.1 3.0 10 Marker 1718615 (3.05) 485913 Marker 1718692 (3.48) 504601 3.1 -30.64 -14.42 8.3 2
果面沟
Fruit sutures (fst)
fst 11 Marker 1993423 (62.18) 20408304 Marker 1998820 (63.05) 21129670 18.3 -0.42 -0.284 33
果皮花纹
Fuit pericarp pattern (fpp)
fpp 2 Marker 459584 (90.91) 26112655 Marker 459446 (90.91) 26189137 7.7 0.309 0.087 5
果皮底色
Fruit pericarp color (pc)
fpc 3.0 7 Marker1229174 (7.14) 709451 Marker1229973 (7.14) 892244 4.7 -0.444 -0.09 9.9 15
[1] ZHAO G W, LIAN Q, ZHANG Z H, FU Q S, HE Y H, MA S W, RUGGIERI V, MONFORTE A J, WANG P Y, JULCA I, WANG H S, LIU J P, XU Y, WANG R Z, JI J B, XU Z H, KONG W H, ZHONG Y, SHANG J L, PEREIRA L, et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nature Genetics, 2019, 51:1607-1615.
doi: 10.1038/s41588-019-0522-8
[2] 高鹏, 刘识, 崔浩楠, 张泰峰, 王学征, 刘宏宇, 朱子成, 栾非时. 甜瓜基因组学、功能基因定位及基因工程育种研究进展. 园艺学报, 2020, 47(9):1827-1844.
GAO P, LIU S, CUI H N, ZHANG T F, WANG X Z, LIU H Y, ZHU Z C, LUAN F S. Research progress of melon genomics, functional gene mapping and genetic engineering. Acta Horticulturae Sinica, 2020, 47(9):1827-1844. (in Chinese)
[3] 刘柳. 甜瓜果皮条纹的遗传分析及其决定基因的精细定位[D]. 哈尔滨: 东北农业大学, 2019.
LIU L. Genetic analysis of rind stripe and fine mapping of the determinate gene in melon (Cucumis melo L.)[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese)
[4] 吕建春. 薄皮甜瓜(Cucumis melo L. var. chinensis Pangalo)果皮花斑的遗传分析及基因定位[D]. 北京: 中国农业科学院, 2018.
LÜ J C. Inheritance and gene mapping of spotted trait in melon (Cucumis melo L. var. chinensis Pangalo)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[5] 欧点点. 甜瓜果皮颜色遗传分析及绿色果皮基因定位[D]. 北京:中国农业科学院, 2019.
OU D D. Genetic Analysis and Gene Mapping for Green Peel Color in Melon (Cucumis melo L.)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[6] GALPAZ N, GONDA I, SHEM-TOV D, BARAD O, TZURI G, LEV S, FEI Z J, XU Y M, MAO L Y, JIAO C, HAREL-BEJA R, DORON-FAIGENBOIM A, TZFADIA O, MEIR E B A, SA'AR U, FAIT A, HALPERIN E, KENIGSWALD M, FALLIK E, KOL N L G, et al. Deciphering genetic factors that determine melon fruit-quality traits using RNA seq-based high-resolution QTL and eQTL mapping. Journal of Molecular Cell Biology, 2018, 94(1):169-191.
[7] 杨光华, 范荣, 杨小锋, 侯军亮, 袁士臣, 曹明, 王学林, 李劲松. 甜瓜果实颜色3个质量性状基因的定位. 园艺学报, 2014, 41(5):898-906.
YANG G H, FAN R, YANG X F, HOU J L, YUAN S C, CAO M, WANG X L, LI J S. Construction of a highly dense genetic map using SNP and mapping of three qualitative traits in Cucumis melo. Acta Horticulturae Sinica, 2014, 41(5):898-906. (in Chinese)
[8] GUR A, TZURI G, MEIR A, SA'AR U, PORTNOY V, KATZIR N, SCHAFFER A A, LI L, BURGER J, TADMOR Y. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Scientific Reports, 2017, 7:9770.
doi: 10.1038/s41598-017-09987-4
[9] FEDER A, BURGER J, GAO S, LEWINSOHN E, KATZIR N, SCHAFFER A A, MEIR A, DAVIDOVICH-RIKANATI R, PORTNOY V, GAL-ON A, FEI Z J, KASHI Y, TADMOR Y. Focus on metabolism: A kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Physiology, 2015, 169(3):1714-1726.
[10] 邱果. 甜瓜果面沟相关基因定位与相关性分析[D]. 哈尔滨: 东北农业大学, 2018.
QIU G. Location of surface groove related gene and correlation analysis in melon[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
[11] CHANG C W, WANG Y H, TUNG C W. Genome-wide single nucleotide polymorphism discovery and the construction of a high- density genetic map for melon (Cucumis melo L.) using genotyping- by-sequencing. Frontiers in Plant Science, 2017, 8:125.
[12] WU S, ZHANG B Y, KEYHANINEJAD N, RODRIGUEZ G R, KIM H J, CHAKRABARTI M, ILLA-BERENGUER E, TAITANO N K, GONZALO M J, DIAZ A, PAN Y P, LEISNERC P, HALTERMAN D, BUELL C R, WENG Y Q, JANSKY S H, VAN ECK H, WILLEMSEN J, MONFORTE A J, MEULIA T, VAN DER KNAAP E. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 2018, 9:4734.
doi: 10.1038/s41467-018-07216-8
[13] 王晨晖, 栾非时, 高鹏, 刘识, 解志强. 菜瓜×马泡瓜遗传连锁图谱构建及果实相关性状QTL分析. 园艺学报, 2019, 46(12):2347-2358.
WANG C H, LUAN F S, GAO P, LIU S, XIE Z Q. Construction of melon genetic linkage map and QTL analysis of fruit related traits in snake melon × wild type melon genetic background. Acta Horticulturae Sinica, 2019, 46(12):2347-2358. (in Chinese)
[14] 胡志程, 周梦迪, 吕建春, 付秋实, 王怀松. 甜瓜遗传图谱与基因定位研究进展. 分子植物育种, 2020, 18(7):2290-2295.
HU Z C, ZHOU M D, LÜ J C, FU Q S, WANG H S. The research progress of genetic maps and genes mapping on melon. Molecular Plant Breeding, 2020, 18(7):2290-2295. (in Chinese)
[15] GARCIA-MAS J, BENJAK A, SANSEVERINO W, BOURGEOIS M, MIR G, GONZÁLEZ V M, HÉNAFF E, CÂMARA F, COZZUTO L, LOWY E, ALIOTO T, CAPELLA-GUTIÉRREZ S, BLANCA J, CAÑIZARES J, ZIARSOLO P, GONZALEZ-IBEAS D, RODRÍGUEZ-MORENO L, DROEGE M, DU L, ALVAREZ-TEJADO M, et al. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29):11872-11877.
[16] 栾非时, 矫士琦, 盛云燕, 朱子成. 甜瓜果实相关性状QTL分析. 东北农业大学学报, 2017, 48(3):1-9.
LUAN F S, JIAO S Q, SHENG Y Y, ZHU Z C. Mapping of QTL for fruit traits in melon. Journal of Northeast Agricultural University, 2017, 48(3):1-9. (in Chinese)
[17] 张学军, 杨文莉, 张永兵, 张健, 郭丽霞, 杨永, 李寐华, 伊鸿平. 采用GBS-seq技术构建甜瓜高密度遗传图谱. 新疆农业科学, 2019(10):1828-1838.
ZHANG X J, YANG W L, ZHANG Y B, ZHANG J, GUO L X, YANG Y, LI M H, YI H P. Construction of high density genetic map and QTL mapping for downy mildew traits in Cucumis melo ssp. melo. Xinjiang Agricultural Sciences, 2019(10):1828-1838. (in Chinese)
[18] 刘相玉, 张裕舒, 刘柳, 刘识, 高鹏, 王迪, 王学征. 基于CAPS标记的甜瓜单果重相关性状QTL分析. 中国农业科学, 2019, 52(9):1601-1613.
LIU X Y, ZHANG Y S, LIU L, LIU S, GAO P, WANG D, WANG X Z. The QTL analysis of single fruit weight associated traits in melon based on CAPS markers. Scientia Agricultura Sinica, 2019, 52(9):1601-1613. (in Chinese)
[19] 张肖静, 张凯歌, 朱华玉, 张宇, 胡倩梅, 程思源, 张敏娟, 胡建斌, 杨路明. 甜瓜侧枝相关性状的QTL定位. 园艺学报, 2019, 46(3):519-528.
ZHANG X J, ZHANG K G, ZHU H Y, ZHANG Y, HU Q M, CHENG S Y, ZHANG M J, HU J B, YANG L M. QTL mapping of lateral branch associated traits in Cucumis melo. Acta Horticulturae Sinica, 2019, 46(3):519-528. (in Chinese)
[20] TZURI G, ZHOU X J, CHAYUT N, YUAN H, PORTNOY V, MEIR A, SA'AR U, BAUMKOLER F, MAZOUREK M, LEWINSOHN E, FEI Z J, SCHAFFER A A, LI L, BURGER J, KATZIR N, TADMOR Y. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal, 2015, 82(2):267-279.
doi: 10.1111/tpj.2015.82.issue-2
[21] ZHANG H, LI X M, YU H Y, ZHANG Y B, LI M H, WANG H J, WANG D M, WANG H S, FU Q S, LIU M, JI C M, MA L M, TANG J, LI S, MIAO J S, ZHENG H K, YI H P. A high-quality melon genome assembly provides insights into genetic basis of fruit trait improvement. IScience, 2019, 22:16-27.
doi: 10.1016/j.isci.2019.10.049
[22] DIAZ A, FERGANY M, FORMISANO G, ZIARSOLO P, BLANCA J, FEI Z J, STAUB J E, ZALAPA J E, CUEVAS H E, DACE G, OLIVER M, BOISSOT N, DOGIMONT C, PITRAT M, HOFSTEDE R, VAN KOERT P, HAREL-BEJA R, TZURI G, PORTNOY V, COHEN S, SCHAFFER A, KATZIR N, XU Y, ZHANG H Y, FUKINO N, MATSUMOTO S, GARCIA-MAS J, MONFORTE A J. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biology, 2011, 11(1):111.
doi: 10.1186/1471-2229-11-111
[23] DÍAZ A, ZAROURI B, FERGANY M, EDUARDO I, ALVAREZ J M, PICÓ B, MONFORTE A J. Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘piel de sapo’ melon (Cucumis melo L.). PLoS ONE, 2014, 9(8):e104188.
doi: 10.1371/journal.pone.0104188
[24] PERPIÑÁ G, ESTERAS C, GIBON Y, MONFORTE A J, PICÓ B. A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 2016, 16(1):154.
doi: 10.1186/s12870-016-0842-0
[25] RAMAMURTHY R K, WATERS B M. Identification of fruit quality and morphology QTLs in melon (Cucumis melo L.) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica, 2015, 204:163-177.
doi: 10.1007/s10681-015-1361-z
[26] 王贤磊, 高兴旺, 李冠, 王惠林, 耿守东, 康锋, 聂祥祥. 甜瓜遗传图谱的构建及果实与种子QTL分析. 遗传, 2011, 33(12):1398-1408.
WANG X L, GAO X W, LI G, WANG H L, GENG S D, KANG F, NIE X X. Construction of a melon genetic map with fruit and seed QTLs. Hereditas, 2011, 33(12):1398-1408. (in Chinese)
[27] 张宁, 张显, 张勇, 马建祥, 杨小振, 王永琦. 甜瓜果实糖含量相关性状QTL分析. 西北植物学报, 2015, 35(2):252-257.
ZHANG N, ZHANG X A, ZHANG Y, MA J X, YANG X Z, WANG Y Q. QTL analysis of fruit sugar content correlated traits in melon. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2):252-257. (in Chinese)
[28] 张雪娇, 高鹏, 栾非时. 甜瓜果实相关性状QTL分析. 中国蔬菜, 2013(18):35-41.
ZHANG X J, GAO P, LUAN F S. QTL analysis of fruits related traits in melon(Cucumis melo L.). China Vegetables, 2013(18):35-41. (in Chinese)
[29] 周鹏, 李钱峰, 熊敏, 范晓磊, 赵冬生, 张昌泉, 刘巧泉. DELLA蛋白介导的激素互作调控植物生长发育研究进展. 植物生理学报, 2020, 56(4):661-671.
ZHOU P, LI Q F, XIONG M, FAN X L, ZHAO D S, ZHANG C Q, LIU Q Q. Advances in DELLA protein-mediated phytohormonal crosstalk in regulation of plant growth and development. Plant Physiology Communications, 2020, 56(4):661-671. (in Chinese)
[30] PAN Y P, WANG Y H, MCGREGOR C, LIU S, LUAN F S, GAO M L, WENG Y Q. Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 2020, 133(1):1-21.
doi: 10.1007/s00122-019-03481-3
[31] MONFORTE A J, DÍAZ A, CAÑO-DELGADO A, KNAAP E. The genetic basis of fruit morphology in horticultural crops: Lessons from tomato and melon. Journal of Experimental Botany, 2014, 65(16):4625-4637.
doi: 10.1093/jxb/eru017
[32] 范文林, 王贤磊, 李群, 俞志杰, 李冠. 甜瓜果长基因fl与性别表达基因a的遗传分析及定位. 新疆农业科学, 2018(10):1765-1774.
FAN W L, WANG X L, LI Q, YU Z J, LI G. Genetic analysis and primary localization of fruit length gene fl and sex expression gene a in melon(Cucumis melo L.). Xinjiang Agricultural Sciences, 2018(10):1765-1774. (in Chinese)
[1] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[2] DIAO WeiNan,YUAN PingLi,GONG ChengSheng,ZHAO ShengJie,ZHU HongJu,LU XuQiang,HE Nan,YANG DongDong,LIU WenGe. Genetic Analysis and Gene Mapping of Canary Yellow in Watermelon Flesh [J]. Scientia Agricultura Sinica, 2021, 54(18): 3945-3958.
[3] XU XinYang,SHEN Jia,ZHANG YueJian,LI GuoJing,NIU XiaoWei,SHOU WeiSong. Fine Mapping of an Immature Rind Color Gene GR in Melon [J]. Scientia Agricultura Sinica, 2021, 54(15): 3308-3319.
[4] MA Jian, LI CongCong, HUANG YaTing, XIE YuLi, CHENG LingLing, WANG JianShe. Fine Mapping and Candidate Gene Analysis of Seed Coat Color Gene CmSC1 in Melon [J]. Scientia Agricultura Sinica, 2021, 54(10): 2167-2178.
[5] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[6] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[7] Jian MA,CongCong LI,JianShe WANG. Fine Mapping and Candidate Gene Analysis of a Short Internodes Gene Cmdm1 in Melon (Cucumis melo L.) [J]. Scientia Agricultura Sinica, 2020, 53(4): 802-810.
[8] GONG ChengSheng, ZHAO ShengJie, LU XuQiang, HE Nan, ZHU HongJu, DOU JunLing, YUAN PingLi, LI BingBing, LIU WenGe. Chemical Compositions and Gene Mapping of Wax Powder on Watermelon Fruit Epidermis [J]. Scientia Agricultura Sinica, 2019, 52(9): 1587-1600.
[9] LIU XiangYu, ZHANG YuShu, LIU Liu, LIU Shi, GAO Peng, WANG Di, WANG XueZheng. The QTL Analysis of Single Fruit Weight Associated Traits in Melon Based on CAPS Markers [J]. Scientia Agricultura Sinica, 2019, 52(9): 1601-1613.
[10] XUE Liang,MA ZhongMing,DU ShaoPing,FENG ShouJiang,RAN ShengBin. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation [J]. Scientia Agricultura Sinica, 2019, 52(4): 690-700.
[11] ZHENG XiaoYuan, WANG TiaoLan, ZHANG JingRong, JIANG Hong, WANG Bin, BI Yang. Using Chlorine Dioxide Treatment to Promote Wound Healing of Postharvest Muskmelon Fruit [J]. Scientia Agricultura Sinica, 2019, 52(3): 512-520.
[12] JiaHao WANG,YaQian DUAN,LanChun NIE,LiYan SONG,WenSheng ZHAO,SiYu FANG,JiaTeng ZHAO. Factor Analysis and Comprehensive Evaluation of the Fruit Quality of ‘Yangjiaocui’ Melons [J]. Scientia Agricultura Sinica, 2019, 52(24): 4582-4591.
[13] BAI RuXia,ZENG HuiWen,FAN Qian,YIN Jie,SUI ZongMing,YUAN Ling. Effects of Ceriporia lacerata on Gummy Stem Blight Control, Growth Promotion and Yield Increase of Cucumbers [J]. Scientia Agricultura Sinica, 2019, 52(15): 2604-2615.
[14] KANG LiYun, CHANG GaoZheng, GAO NingNing, LI XiaoHui, LI HaiLun, LIANG Shen, XU XiaoLi, ZHAO WeiXing. Effects of Different Nitrogen and Potassium Fertilizing Amount on Nutrition Absorption, Nutrition Distribution and Yield of Muskmelon [J]. Scientia Agricultura Sinica, 2018, 51(9): 1758-1770.
[15] JI WanLi, ZHU HongJu, LU XuQiang, ZHAO ShengJie, HE Nan, GENG LiHua, LIU WenGe. The Mechanism of Resistance to Fusarium oxysporum f. sp. niveum Race 1 in Tetraploid Watermelon [J]. Scientia Agricultura Sinica, 2018, 51(19): 3750-3765.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!