Scientia Agricultura Sinica ›› 2011, Vol. 44 ›› Issue (11): 2284-2293 .doi: 10.3864/j.issn.0578-1752.2011.11.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Cropland-Use Management on Potentials of Soil Carbon Sequestration and Carbon Emission Mitigation in China

WANG Xiao-bin, WU Xue-ping, ZHAO Quan-sheng, DENG Xiang-zheng, CAI Dian-xiong   

  1. 中国农业科学院农业资源与农业区划研究所/农业部植物营养与养分循环重点实验室
  • Received:2010-07-05 Revised:2010-08-10 Online:2011-06-01 Published:2011-06-01

Abstract:

Changes in land use, especially in cropland-use management, induced by human activities is one of the most important factors influencing climate change. In China, facing the huge pressure of dealing with climate change, the research on the relations between cropland-use management and soil carbon (C) sink, and the effects of cropland-use management on soil C sequestration and C emission mitigation is important, aiming at providing a decision-making basis for improvement of soil C sequestration and C emission mitigation in China. Through the literature reviews, this paper analyzes the impact of cropland-use management on soil C sequestration and C emission mitigation in China. As literature reviewed, agriculture is not only a main source of C emission, but also a sink of C sequestration. Through improvement of cropland-use management (such as increasing straw return into the soil, organic fertilizer application, and no-till/reduced tillage practices, etc.), there has shown an increasing trend in soil C sink in cropland since the last 20 years. Based on the estimation of soil C sequestration in cropland in China, especially with the recommended management practices, especially in the future 50 years, the potential for soil C sequestration in cropland of China is estimated about 87-393 TgC·a-1, thus offsetting about 11%-52% of the total industry C emissions, in which improved cropland-use management (including straw return, organic fertilizer application, and no-till/reduced tillage) could share about 30%-36% of C sequestration. This shows that cropland-use management in China could play an important role in soil C sequestration and C emission mitigation.

Key words: China, cropland-use management, soil carbon sequestration, carbon emission

[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] QIAO Yuan,YANG Huan,LUO JinLin,WANG SiXian,LIANG LanYue,CHEN XinPing,ZHANG WuShuai. Inputs and Ecological Environment Risks Assessment of Maize Production in Northwest China [J]. Scientia Agricultura Sinica, 2022, 55(5): 962-976.
[5] CHEN XuHao,GAO Qiang,CHEN XinPing,ZHANG WuShuai. Temporal and Spatial Characteristics of Resources Input and Environmental Effects for Maize Production in the Three Provinces of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3170-3184.
[6] WAN LianJie,HE Man,LI JunJie,TIAN Yang,ZHANG Ji,ZHENG YongQiang,LÜ Qiang,XIE RangJin,MA YanYan,DENG Lie,YI ShiLai. Effects of Partial Substitution of Chemical Fertilizer by Organic Fertilizer on Ponkan Growth and Quality as well as Soil Properties [J]. Scientia Agricultura Sinica, 2022, 55(15): 2988-3001.
[7] WU QiuLin,JIANG YuYing,LIU Yuan,LIU Jie,MA Jing,HU Gao,YANG MingJin,WU KongMing. Migration Pathway of Spodoptera frugiperda in Northwestern China [J]. Scientia Agricultura Sinica, 2022, 55(10): 1949-1960.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[10] LI E,ZHAO Jin,YE Qing,GAO JiQing,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China ⅫⅠ. Precipitation Limitation on Adjusting Maturity Cultivars of Spring Maize and Its Possible Influence on Yield in Three Provinces of Northeastern China [J]. Scientia Agricultura Sinica, 2021, 54(18): 3847-3859.
[11] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[12] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[13] ZHANG WeiLi,ZHANG RenLian,JI HongJie,KOLBE H,CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution [J]. Scientia Agricultura Sinica, 2020, 53(5): 965-976.
[14] TIAN Yun,WANG MengChen. Research on Spatial and Temporal Difference of Agricultural Carbon Emission Efficiency and Its Influencing Factors in Hubei Province [J]. Scientia Agricultura Sinica, 2020, 53(24): 5063-5072.
[15] YANG JunHao,LUO YongLi,CHEN Jin,JIN Min,WANG ZhenLin,LI Yong. Effects of Main Food Yield Under Straw Return in China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2020, 53(21): 4415-4429.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!