Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (1): 136-144 .doi: 10.3864/j.issn.0578-1752.2009.01.017

• PLANT PROTECTION • Previous Articles     Next Articles

Optimization of Enzyme Protectant of Chlorpyifos-Biodegradation Fungi and Its Stability

  

  1. 华南农业大学昆虫毒理研究室
  • Received:2008-01-10 Revised:2008-08-28 Online:2009-01-10 Published:2009-01-10
  • Contact: HU Mei-ying

Abstract:

【Objective】The objective of this study was to optimize the composition of enzyme protectant of chlorpyifos- biodegradation fungi and determine its stability.【Method】Based on the screening of chlorpyrifos biodegrading fungal strain, Cladosporium cladosporioides (the ID of fungi preservation CCTCCM207111. Accession number of ITS sequence analysis Genebank EF405864), extracellular enzymes were extracted. Applying the composite rotatable design, a model of the optimal mixture protect agents was established. After the optimal composition was validated, the enzyme preparation storage experiment was tested to determine the stability of biodegradation by high performance liquid chromatography analysis. 【Result】 The results showed that the optimal composition was 0.70% NaCl, 0.35% glycine, 0.03% sodium benzoate, 0.17% Cosmetic, and 8.38% glycerol. When 9.90 mg?L-1 of final concentration of emzyme protein was added into the 50 mg?L-1 of chlorpyrifos, results of HPLC analysis after biodegradation 10 min indicated that the degradation rate of the enzyme preparations was more than 80% after storage 5 months under the temperature from 20℃ to 50℃and the light almost has no effect on the degradation rate. 【Conclusion】 It is concluded that an economical and stable enzymic protectant of chlorpyifos-biodegradation fungi is got, which has provided a foundation for commercial production of enzymic preparation in dealing with pesticide residues of agricultural products.

Key words: chlorpyifos, biodegradation enzyme protectant, optimization, stability

[1] FENG JunJie,ZHAO WenDa,ZHANG XinQuan,LIU YingJie,YUAN Shuai,DONG ZhiXiao,XIONG Yi,XIONG YanLi,LING Yao,MA Xiao. DUS Traits Variation Analysis and Application of Standard Varieties of Lolium multiflorum Introduced from Japan [J]. Scientia Agricultura Sinica, 2022, 55(12): 2447-2460.
[2] FENG Xiao,ZHANG Fan,CHEN Ying,CHENG JiaXin,CEN KaiYue,TANG XiaoZhi. Effects of Adding Quinoa Protein Pickering Emulsion on Freeze- Thaw Stability of Fish Surimi Gel [J]. Scientia Agricultura Sinica, 2022, 55(10): 2038-2046.
[3] NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
[4] LI ZhaoRui,HAN XinRui,FAN Xin,HUANG JunRong,CAO YunGang,XIONG YouLing. Regulation Effects of Ultrasound on the Structure and Emulsification Properties of Pea Protein Isolate [J]. Scientia Agricultura Sinica, 2021, 54(22): 4894-4905.
[5] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[6] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[7] CHEN LiMing,ZHOU YanZhi,TAN YiQing,WU ZiMing,TAN XueMing,ZENG YongJun,SHI QingHua,PAN XiaoHua,ZENG YanHua. High and Stable Yield of Early Indica Rice Varieties with Double-Season Mechanical Direct Seeding [J]. Scientia Agricultura Sinica, 2020, 53(2): 261-272.
[8] TIAN Yuan,WANG Li,LONG Feng,ZAN LinSen,CHENG Gong. Codon Optimization of Human Lysozyme and High-Efficiency Expression in Bovine Mammary Cells [J]. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817.
[9] LI XiaoFei,LI PeiYuan,LI AnQi,YU WenYan,GUO Chuo,YANG Xi,GUO YuRong. Effects of Xanthan Addition on the Gel Properties and Gel Mechanism of Alkaline-Induced Konjac Glucomannan Gels [J]. Scientia Agricultura Sinica, 2020, 53(14): 2941-2955.
[10] RuoNan LI,ShaoWen HUANG,JianShuo SHI,LiYing WANG,JiWei TANG,HuaiZhi ZHANG,Shuo YUAN,FengZhi ZHAI,YanLi REN,Li GUO. Optimization Management of Water and Fertilization for Winter-Spring Cucumber Under Greenhouse Drip Irrigation Condition [J]. Scientia Agricultura Sinica, 2019, 52(20): 3648-3660.
[11] ZHOU JianMin,YIN FangPing,YU Chen,TANG XiaoZhi. Preparation and Stability of Sorghum ACE Inhibitory Peptides by Extrusion-Enzyme Synergistic Method [J]. Scientia Agricultura Sinica, 2019, 52(2): 339-349.
[12] LI XiaoYing,WANG HaiJing,XU NingWei,CAO CuiLing,LIU JianZhen,WU ChunCheng,ZHANG LiBin. Analysis of Volatile Components in Cerasus Humilis (Bge.) Sok by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry [J]. Scientia Agricultura Sinica, 2019, 52(19): 3448-3459.
[13] ZHANG ChunLong, Channarong PHONGSAI, ZHANG JiangLi, YUYang, SU YaoHua, YANG Mi, GAO Liang, PU ShiHuang, LI Juan, JIN ShouLin, TAN XueLin, WEN JianCheng. Evaluation of Rice Germplasms for Grain Resistant Starch Content and Its Environmental Stability [J]. Scientia Agricultura Sinica, 2019, 52(17): 2921-2928.
[14] LIU HuiFang,HE Zheng,JIA Biao,LIU Zhi,LI ZhenZhou,FU JiangPeng,MU RuiRui,KANG JianHong. Photosynthetic Response Characteristics of Maize Under Drip Irrigation Based on Machine Learning [J]. Scientia Agricultura Sinica, 2019, 52(17): 2939-2950.
[15] JIA MengKe,WU Zhong,ZHAO WuQi,LU Dan,ZHANG QingAn,ZHANG BaoShan,SONG ShuJie. Response Surface Design and Multi-Objective Optimization of Apple Slices Dried by Air-Impingement [J]. Scientia Agricultura Sinica, 2019, 52(15): 2695-2705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!