Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2695-2705.doi: 10.3864/j.issn.0578-1752.2019.15.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Response Surface Design and Multi-Objective Optimization of Apple Slices Dried by Air-Impingement

JIA MengKe,WU Zhong,ZHAO WuQi(),LU Dan,ZHANG QingAn,ZHANG BaoShan,SONG ShuJie   

  1. College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119
  • Received:2019-02-13 Accepted:2019-04-09 Online:2019-08-01 Published:2019-08-06
  • Contact: WuQi ZHAO E-mail:zwq65@163.com

Abstract:

【Objective】 In order to obtain the drying process parameters of apple slices with high quality and low energy consumption, the effects of air temperature, slice thickness, air velocity and their interaction on the vitamin C (VC) content, rehydration ratio and energy consumption were investigated during the air-impingement drying of apple slices. 【Method】 With the air temperature, slice thickness and air velocity as the factors, and the three-factor response surface Box-Behnken response surface design was carried out with the VC content, rehydration ratio and unit energy consumption of apple slices as the response. The factors and their interactions between the various factors were analyzed, and a quadratic regression model of VC content, rehydration ratio and unit energy consumption was established and verified by applying three optimization methods, including genetic algorithm, fgoalattain function method and membership degree comprehensive evaluation method, were applied respectively. 【Result】 The factors’ order of influencing on the Vc content was as the follows: Air temperature, slice thickness and air velocity. Regarding the air temperature, both the interactions between the slice thickness and the air velocity were extremely significant, respectively. The factors’ influencing rehydration ratio ordered as the air temperature, air velocity and slice thickness, and all these factors had an extremely significant effect; the interactions between slice thickness and air velocity were significant. The orders influencing on the energy consumption were the slice thickness, air temperature and air velocity. And the air temperature, slice thickness and the interactions between air temperature and air velocity were extremely significant, air velocities and the interactions between air temperature and slice thickness were significant. The established regression model of VC content, rehydration ratio and energy consumption was statistically significant (P<0.05), suggesting that the model could be used to analyze and predict air-impingement drying parameters. The optimal drying parameters analyzed by genetic algorithm were of 63.24℃ air temperature, 2.00 mm slice thickness and 12.00 m·s -1air velocity, respectively. Under these conditions, the VC content, rehydration ratio and energy consumption of apple slices were 66.96 μg/100 g, 3.83 and 26.49 kJ·g -1, respectively; the optimal process parameters obtained by fgoalattain function were as: air temperature 71.62℃, slice thickness 2.37 mm, air velocity 11.18 m·s -1, and VC content was 64.90 μg/100 g, rehydration ratio was 3.41, and unit energy consumption was 25.85 kJ·g -1; the optimal process parameters obtained by the comprehensive evaluation method of membership degree were as: air temperature 63.57℃, slice thickness 2.00 mm, air velocity 12.00 m·s -1, and VC content was 66.94 μg/100 g, rehydration ratio was 3.79, unit energy consumption was 26.53 kJ·g -1. With the fitness value as the index, it could be concluded that the genetic algorithm optimized results were the best. 【Conclusion】The genetic algorithm could be used for the multi-objective optimization in air-impingement drying apple slices. The optimum parameters were of 63℃ air temperature, 2 mm slice thickness, and 12 m·s -1air velocity. With these parameters, the VC content, rehydration ratio and unit energy consumption under this parameter were 66.85 μg/100 g, 3.78, and 26.59 kJ·g -1, respectively. In conclusion, the air-impingement technique could be applied in the drying of apple slices with high VC content, high rehydration ratio and low energy consumption.

Key words: apple slice, air-impingement drying, quality evaluation, response surface, comprehensive optimization

Table 1

Response surface design and parameters"

因素
Factor
水平 Level
-1 0 1
A风温 Air temperature (℃) 60 70 80
B切片厚度 Slice thickness (mm) 2 4 6
C风速 Air velocity (m·s-1) 10 11 12

Table 2

The results of response surface method"

编号
Code
风温
Air
temperature
(℃)
切片厚度
Slice
thickness
(mm)
风速
Air velocity
(m·s-1)
VC
(μg/100 g)
复水比
Rehydration ratio
能耗
Energy consumption
(kJ·g-1)
VC含量
隶属度值Membership value of VC
复水比
隶属度值
Membership
value of RR
能耗隶属值
Membership value of energy consumption
综合评价S Comprehensive evaluation
1 80 6 11 54.63 2.58 33.76 0.02 0.02 0.39 0.09
2 60 6 11 67.23 3.42 38.64 0.98 0.65 0.00 0.72
3 70 6 10 66.18 3.81 37.41 0.90 0.95 0.10 0.75
4 70 4 11 66.12 3.28 27.64 0.90 0.55 0.88 0.82
5 70 6 12 63.44 3.05 35.47 0.69 0.38 0.25 0.54
6 60 2 11 63.48 3.83 28.19 0.70 0.96 0.83 0.78
7 60 4 12 67.45 3.47 29.68 1.00 0.69 0.72 0.88
8 70 2 12 65.51 3.56 26.11 0.85 0.76 1.00 0.86
9 70 4 11 65.20 3.18 28.16 0.83 0.47 0.84 0.76
10 60 4 10 63.23 3.78 33.85 0.68 0.92 0.38 0.67
11 80 4 10 60.51 2.96 28.15 0.47 0.31 0.84 0.51
12 70 4 11 66.10 3.42 27.11 0.90 0.65 0.92 0.85
13 80 4 12 54.42 2.55 30.64 0.00 0.00 0.64 0.13
14 70 2 10 64.86 3.88 28.73 0.80 1.00 0.79 0.84
15 70 4 11 63.89 3.27 28.88 0.73 0.54 0.78 0.70
16 80 2 11 60.25 2.83 26.64 0.45 0.21 0.96 0.50
17 70 4 11 64.59 3.33 27.45 0.78 0.59 0.89 0.76

Table 3

Three indicators regression coefficient significance test results"

变异来源
Source
自由度
Free degree
PP value
y1 y2 y3
模型Model 9 <0.0001 <0.0001 <0.0001
A 1 <0.0001 <0.0001 0.0007
B 1 0.0459 0.0012 <0.0001
C 1 0.103 0.0001 0.0151
AB 1 0.0004 0.3716 0.0465
AC 1 0.0002 0.5696 0.0019
BC 1 0.0576 0.0342 0.6371
A2 1 <0.0001 0.0004 0.006
B2 1 0.8042 0.0171 <0.0001
C2 1 0.8144 0.0074 0.0038
失拟项 Lack of fit 3 0.9791 0.5606 0.4814

Table 4

Result of single targets’ optimization"

目标
Target
风温
Air temperature (℃)
切片厚度
Slice thickness (mm)
风速
Air velocity (m·s-1)
目标优化值
The optimal value of target
VC (y1) (μg/100 g) 60.10 4.37 11.99 67.63
复水比Rehydration ratio (y2) 60.65 2.58 10.13 3.91
能耗Energy consumption (y3) (kJ·g-1) 71.04 2.40 10.85 26.05

Fig. 1

Effects of AB mutual interactions and AC mutual interactions on the content of Vc"

Fig. 2

Effects of AB mutual interactions and AC mutual interactions on the content of energy consumption"

Fig. 3

Effects of BC mutual interactions on the RR"

Table 5

Comparison of three optimization methods"

优化方法
Optimization methods
工艺参数 Process parameter 考察指标Index 适应度值
Fitness value
风温
Air temperature
(℃)
风速
Air velocity
(m·s-1)
切片厚度
Slice thickness
(mm)
VC
(μg/100 g)
复水比
Rehydration ratio
单位能耗
Energy consumption (kJ·g-1)
遗传算法
Genetic algorithm
63.24 2.00 12.00 66.96 3.83 26.49 0.000198
Fgoalattain函数法
Fgoalattain function method
71.62 2.37 11.18 64.90 3.41 25.85 0.004298
隶属度综合评分法
Membership degree comprehensive
evaluation method
63.57 2.00 12.00 66.94 3.80 26.53 0.000298

Table 6

Analysis of variance of membership degree comprehensive score response surface regression model"

平方和
Sum of squares
自由度
Free degree
均方差
Mean square deviation
F
F value
P
P value
显著性
Significance
模型Model 0.88 9 0.098 48.5 <0.0001 显著
Significant
气流温度 Air temperature (℃) 0.41 1 0.41 204.4 <0.0001
切片厚度 Slice thickness (mm) 0.097 1 0.097 47.79 0.0002
C-气流速度 Air velocity (m·s-1) 0.016 1 0.016 8 0.0255
AB 0.031 1 0.031 15.12 0.006
AC 0.087 1 0.087 42.96 0.0003
BC 0.013 1 0.013 6.53 0.0378
A2 0.22 1 0.22 107.81 <0.0001
B2 0.00324 1 0.00324 1.6 0.2463
C2 0.0000318 1 0.0000318 0.016 0.9038
残基Residual 0.014 7 0.00203
失拟项 Lack of Fit 0.0005 3 0.000167 0.049 0.9838 不显著
Not significant
纯误差 Pure Error 0.014 4 0.00342
总和 Total 0.9 16
[1] 白杰, 曹晓虹, 罗瑞明, 周玉霞 . 苹果冷冻干燥工艺优化. 食品科学, 2005,26(3):169-173.
BAI J, CAO X H, LUO R M, ZHOU Y X . The optimization of freeze-drying technology of apple. Food Science, 2005,26(3):169-173. (in Chinese)
[2] 李静, 宋飞虎, 浦宏杰, 李臻锋 . 苹果微波干燥的变温控制方法研究. 现代食品科技, 2015,31(7):218-224.
LI J, SONG F H, PU H J, LI Z F . Microwave drying of apples based on stage-changed high-temperature treatment. Modern Food Technology, 2015, 31(7):218-224. (in Chinese)
[3] 程晶晶, 王军, 武冰芪 . 苹果片的热风干燥特性及数学模型研究. 许昌学院学报, 2016,35(2):91-99.
CHENG J J, WANG J, WU B Q . Study on hot-air drying characteristics of apple slices and their mathematical models. Journal of Xuchang University, 2016,35(2):91-99. (in Chinese)
[4] QIU G, WANG D F, SONG X Y, DENG Y, ZHAO Y Y . Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices. Food research international (Ottawa, Ont.), 2017,105:121-128.
[5] 薛珊, 赵武奇, 高贵田, 吴忠, 张建 . 基于遗传算法的苦瓜片气体射流冲击干燥工艺优化. 食品与发酵工业, 2017,43(5):180-184.
XUE S, ZHAO W Q, GAO G T, WU Z, ZHANG J . Optimization of drying process of sliced bitter melon in air-impinged jet dryer using genetic algorithm. Food and Fermentation Industries, 2017, 43(5):180-184. (in Chinese)
[6] MASKAN M . Drying shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 2001,48(2):177-182.
[7] 杜友, 郭玉海, 崔旭盛, 陈晓丽, 翟志席 . 鲜肉苁蓉气体射流冲击干燥工艺. 农业工程学报, 2010,26(s1):334-337.
DU Y, GUO Y H, CUI X S, CHEN X L, ZHAI Z X . Technology of air-impingement drying for fresh cistanche. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(s1):334-337. (in Chinese)
[8] 王丽红, 高振江, 肖红伟, 林海, 姚雪东 . 圣女果的气体射流冲击干燥动力学. 江苏大学学报: 自然科学版, 2011,32(5):540-544.
WANG L H, GAO Z J, XIAO H W, LIN H, YAO X D . Air impingement drying kinetics of cherry tomato. Journal of Jiangsu University (Natural Science Edition), 2011,32(5):540-544. (in Chinese)
[9] XIAO H W, GAO Z J, LIN H, YANG W X . Air impingement drying characteristics and quality of carrot cubes. Journal of Food Process Engineering, 2010,33(5):899-918.
[10] XIAO H W, LAW C L, SUN D W, GAO Z J . Color change kinetics of American ginseng (Panax quinquefolium) slices during air impingement drying. Drying Technology, 2014,32(4):418-427.
[11] XIAO H W, YAO X D, LIN H, YANG W X, MENG J S, GAO Z J . Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. Journal of Food Process Engineering, 2012,35(3):370-390.
[12] LI W F, WANG M Y, XIAO X L, ZHANG B S, YANG X B . Effects of air-impingement jet drying on drying kinetics, nutrient retention and rehydration characteristics of onion(Allium cepa) slices. International Journal of Food Engineering, 2015(3):435-446.
[13] XIAO H W, PANG C L, WANG L H . Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering, 2010,105(2):233-240.
[14] 高振江 . 气体射流冲击颗粒物料干燥机理与参数试验研究[D]. 北京: 中国农业大学, 2000.
GAO Z J . Experimental study on drying mechanism and parameters of gas jet impinging on particulate materials[D]. Beijing: China Agricultural University, 2000. (in Chinese)
[15] 郑霞, 肖红伟, 王丽红, 张茜, 白竣文, 谢龙, 巨浩宇, 高振江 . 红外联合气体射流冲击方法缩短哈密瓜片的干燥时间. 农业工程学报, 2014,30(1):262-269.
ZHENG X, XIAO H W, WANG L H, ZHANG Q, BAI J W, XIE L, JU H Y, GAO Z J . Shorting drying time of Hami-melon slice using infrared radiation combined with air impingement drying. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(1):262-269. (in Chinese)
[16] 孟庆辉 . 气体射流冲击节能技术在苹果干燥加工中的应用研究[D]. 西安: 陕西师范大学, 2009.
MENG Q H . study on air-impingement jet drying energy-saving technologies in the process of apple drying[D]. Xi’an: Shaanxi Normal University, 2009. (in Chinese)
[17] 刘云宏, 朱文学, 刘建学 . 地黄真空红外辐射干燥热质传递分析. 农业机械学报, 2001,42(10):135-139.
LIU Y H, ZHU W X, LIU J X . Mass and heat transfer analysis of vacuum infrared radiation drying on Rehmanniae. Transactions of the Chinese Society of Agricultural Machinery, 2001,42(10):135-139. (in Chinese)
[18] 吕玉坤, 肖卿宇 . 基于遗传算法的计算机水冷循环泵叶轮优化. 电力科学与工程, 2016,32(3):67-71.
LV Y K, XIAO Q Y . Design optimization of a centrifugal pump impeller for CPU refrigerating using genetic algorithm. Electric Power Science and Engineering, 2016,32(3):67-71. (in Chinese)
[19] 李志国, 崔周全, 张电吉, 陈鹏能 . 磷矿堆场多目标优化配矿模型. 武汉工程大学学报, 2012,34(10):11-14.
LI Z G, CUI Z Q, ZHANG D J, CHEN P N . Multi-objective optimization mathematical model for ore blending in stockyard. Journal of Wuhan University of Technology, 2012,34(10):11-14. (in Chinese)
[20] 李军, 许树栋, 张红超, 王露, 李朋 . 多元回归综合优化碳化硅超细粉球团变温干燥工艺. 过程工程学报, 2017,17(3):600-604.
LI J, XU S D, ZHANG H C, WANG L, LI P . Multi-variable regression analysis applied to process optimization of variable temperature drying on SiC ultra-fine powder pellets. Chinese Journal of Process Engineering, 2017,17(3):600-604. (in Chinese)
[21] 李文峰, 肖旭霖, 王玮 . 紫薯气体射流冲击干燥效率及干燥模型的建立. 中国农业科学, 2013,46(2):356-366.
doi: 10.3864/j.issn.0578-1752.2013.02.015
LI W F, XIAO X L, WANG W . Drying characteristics and model of purple sweet potato in air-impingement jet dryer. Scientia Agricultura Sinica, 2013, 46(2):356-366. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.02.015
[22] 张茜, 肖红伟, 代建武, 杨旭海, 娄正, 白竣文, 高振江 . 哈密瓜片气体射流冲击干燥特性和干燥模型. 农业工程学报, 2011,27(s1):382-388.
ZHANG X, XIAO H W, DAI J W, YANG X H, LOU Z, BAI J W, GAO Z J . Air impingement drying characteristics and drying model of Hami melon flake. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(s1):382-388. (in Chinese)
[23] 邓红, 王小娟 . 不同干燥方法对苹果片品质的影响. 食品科技, 2007,32(2):84-87.
DENG H, WANG X J . Influence of different drying methods to apple slice quality Food Science, 2007,32(2):84-87. (in Chinese)
[24] 袁江兰, 康旭, 陈锦屏 . 不同预处理方法对山楂干制过程中Vc稳定性的影响. 食品工业科技, 2002,23(10):16-19.
YUAN J L, KANG X, CHEN J P . Effect of different pretreatments on stability of vitamin C in haw during dehydration. Science and Technology of Food Industry, 2002,23(10):16-19. (in Chinese)
[25] 黄迪, 李文峰, 杨兴斌, 张忠 . 气体射流冲击干燥猕猴桃片的复水动力学特性及数学模型. 食品与发酵工业, 2017,43(5):86-92.
HUANG D, LI W F, YANG X B, ZHANG Z . Rehydration characteristics and math model for different air-impingement jet dried kiwifruit slices. Food and Fermentation Industry, 2017,43(5):86-92. (in Chinese)
[26] 杨改强, 霍丽娟, 杨国义, 李一菲, 钱天伟 . 利用MATLAB拟合van Genuchten方程参数的研究. 土壤, 2010,42(2):268-274.
YANG G Q, HUO L J, YANG G Y, LI Y F, QIAN T W . Research on fitting van Genuchten equation parameter with MATLAB software. Soils, 2010,42(2):268-274. (in Chinese)
[27] 熊德国, 鲜学福 . 模糊综合评价方法的改进. 重庆大学学报(自然科学版), 2003,26(6):93-95.
XIONG D G, XIAN X F . Improvement of fuzzy comprehensive evaluation method. Journal of Chongqing University (Natural Science Edition), 2003, 26(6):93-95. (in Chinese)
[28] 张小霞, 吴巧凤, 董旭旦, 刘园 . 猪苓多糖的提取工艺优化及抗氧化活性研究. 中华中医药学刊, 2016,34(8):2025-2028.
ZHANG X X, WU Q F, DONG X D, LIU Y . Optimizing extraction process of polyporus umbellatus polysaccharide and its anti-oxidation activity. Chinese Journal of Traditional Chinese Medicine and Pharmacy, 2016,34(8):2025-2028. (in Chinese)
[29] 胡瑾, 何东健, 任静, 刘翔, 梁岩, 代建国, 张海辉 . 基于遗传算法的番茄幼苗光合作用优化调控模型. 农业工程学报, 2014,30(17):220-227.
HU J, HE D J, REN J, LIU X, LIANG Y, DAI J G, ZHANG H H . Optimal regulation model of tomato seedlings’ photosynthesis based on genetic algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(17):220-227. (in Chinese)
[30] 朱益波, 张建华, 史仲平, 毛忠贵 . 人工神经网络结合遗传算法在焙炒大米过程中的应用. 食品与生物技术学报, 2004,23(3):51-56.
ZHU Y B, ZHANG J H, SHI Z P, MAO Z G . Application of genetic algorithm associated with artificial neural network techniques for optimization of rice roasting process. Journal of Food Science and Biotechnology, 2004,23(3):51-56. (in Chinese)
[31] 李冬冬, 贾柳君, 张海红, 沈静波, 李子文 . 基于介电谱技术结合遗传算法的草莓品质预测. 食品工业科技, 2016,37(23):272-276.
LI D D, JIA L J, ZHANG H H, SHEN J B, LI Z W . Strawberry quality prediction based on dielectric spectrum technology combining with genetic algorithm. Science and Technology of Food Industry, 2016,37(23):272-276. (in Chinese)
[1] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[2] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[3] ZHONG YanPing,SHI LiSong,ZHOU Rong,GAO Yuan,HE YanQing,FANG Sheng,ZHANG XiuRong,WANG LinHai,WU ZiMing,ZHANG YanXin. Establishment of High Efficient Extraction and Detection Technology of Sesamin and Screening of High Sesamin Germplasm [J]. Scientia Agricultura Sinica, 2022, 55(11): 2109-2120.
[4] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[5] WANG XuanXuan,LIU ChunYu,XIE BeiYu,ZHANG ShuShu,WANG DanYang,ZHU ZhenYuan. Extraction Technology, Preliminary Structure and α-glucosidase Inhibition of Polysaccharide with Alkaline-Extracted from Sugarcane Peel [J]. Scientia Agricultura Sinica, 2021, 54(12): 2653-2665.
[6] KUANG LiXue,NIE JiYun,LI YinPing,CHENG Yang,SHEN YouMing. Quality Evaluation of ‘Fuji’ Apples Cultivated in Different Regions of China [J]. Scientia Agricultura Sinica, 2020, 53(11): 2253-2263.
[7] ZENG XiangYuan,ZHAO WuQi,LU Dan,WU Ni,MENG YongHong,GAO GuiTian,LEI YuShan. Effects of Ultrasound on the Sugar Permeability Effect, Drying Energy Consumption and Quality of Kiwifruit Slices [J]. Scientia Agricultura Sinica, 2019, 52(4): 725-737.
[8] ZHANG Jia, NIE JiYun, ZHANG Hui, LI Jing, LI Ye. Evaluation Indexes for Blueberry Quality [J]. Scientia Agricultura Sinica, 2019, 52(12): 2128-2139.
[9] YANG TianGe, DENG Hong, LI Han, MENG YongHong, LEI JiaLei, MA Jing, GUO YuRong . Optimization of Ultra-High Pressure Sterilization Conditions on the Kiwi Fruit Pulp Produced by Cold Crushing Method and Its Sterilization Effect During Storage Period [J]. Scientia Agricultura Sinica, 2018, 51(7): 1368-1377.
[10] WU XuanYi, CAO HongXia, WANG HuBing, HAO ShuXue. Effect of Planting Row Spacing and Irrigation Amount on Comprehensive Quality of Short-Season Cultivation Tomato in Solar Greenhouse in Northwest China [J]. Scientia Agricultura Sinica, 2018, 51(5): 940-951.
[11] Lü Jian, LIU Xuan, BI Jin-feng, ZHOU Lin-yan, WU Xin-ye. Research on the Quality Evaluation for Peach and Nectarine Chips by Explosion Puffing Drying [J]. Scientia Agricultura Sinica, 2016, 49(4): 802-812.
[12] LI Hong-zheng, CAO Hong-xia, GUO Li-jie, WU Xuan-yi. Effect of Furrow Irrigation Pattern and Irrigation Amount on Comprehensive Quality and Yield of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2016, 49(21): 4179-4191.
[13] ZHANG Lu-lu, WU Sheng-yong, WANG Shuai-yu, LI Juan, LEI Zhong-ren. Optimization of Fermentation Process of Beauveria bassiana of SDDZ-9 Against Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2015, 48(15): 2985-2994.
[14] CAO Ke-ke, LIU Ning, MA Shuang-xin, CAO Zhi-yan, LIANG Dong-xu, CHAI Jiang-ting, DONG Jin-gao. Optimization of Fermentation Condition for Laccase Production by Setosphaeria turcica Using the Response Surface Methodology and the Enzymatic Characters [J]. Scientia Agricultura Sinica, 2015, 48(11): 2165-2175.
[15] LI Zhen, HA Yi-Ming, LI An, LI Wei-Ming, WANG Feng, LI Qing-Peng. Optimization of Ultrasound-Assisted Extraction Technology of Polyphenols from Apple Pomace by Response Surface Methodology [J]. Scientia Agricultura Sinica, 2013, 46(21): 4569-4577.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!