Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (1): 1-9 .doi: 10.3864/j.issn.0578-1752.2009.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Analysis on Blast Resistance Phenotypes and Resistance Gene Analog Polymorphism of Rice Varieties

  

  1. 四川农业大学水稻研究所
  • Received:2008-01-10 Revised:1900-01-01 Online:2009-01-10 Published:2009-01-10
  • Contact: LI Shi-gui; XIAO Pei-cun

Abstract:

【Objective】 In this paper,the study was conducted to investigate the relationship between phenotype of blast resistance and resistance gene analog polymorphism of rice, and search molecule hereditary basis of broad spectrum and durable resistance. 【Method】 Comparison of clustering analysis was investigated using spectrum of resistance to blast and polymorphism of resistance gene analog (RGA) in 25 varieties for blast resistance identification and 20 varieties (lines). 【Result】 The resistance spectrum clustering analysis showed that the 45 varieties (lines) could be divided into group A and group B with the genetic similarity coefficient of 0.450. Group A and group B could be divided into subclassⅰ, subclass ⅱ, subclass ⅲ, subclass ⅳ, respectively, with 0.618 genetic similarity coefficient. The RGA-PCR clustering analysis showed that proposed the 45 varieties (lines) could be divided into group Ⅰ and group Ⅱ which clearly inclined the Indica-japonica differentiation with 0.620 genetic similarity coefficient. GroupⅠcould be divided into six subclasses and group Ⅱ could be divided into seven subclasses with 0.783 genetic similarity coefficient. The resistance spectrum clustering analysis showed that some varieties with similar resistance spectrum could finely fall into the same group, while the RGA-PCR clustering analysis showed that some varieties with the similar genetic background could fall into the same group. For some varieties with low resistance frequency or high resistance frequency, there was a better corresponding relationship between the resistance spectrum clustering and the RGA-PCR clustering. General comparison of clustering analysis showed that there was no parallelism relationship between group and group in two different types of the clustering 【Conclusion】 It could more accurately reflect their genetic background to test resistance to single strain and analysis on RGA polymorphism for resistance parents, and avoid applying the same source of resistance again and again, and enrich rice resistance germplasm, and breed durable resistance varieties.

Key words: rice varieties, blast resistance phenotypes, resistance gene analog, polymorphism

[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[3] LIANG Peng,ZHANG TianWen,MENG Ke,SHAO ShunCheng,ZOU ShiFan,RONG Xuan,QIANG Hao,FENG DengZhen. Association Analysis of the ADIPOQ Variation with Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2022, 55(11): 2239-2256.
[4] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[5] ZHANG PengFei,SHI LiangYu,LIU JiaXin,LI Yang,WU ChengBin,WANG LiXian,ZHAO FuPing. Advance in Genome-Wide Scan of Runs of Homozygosity in Domestic Animals [J]. Scientia Agricultura Sinica, 2021, 54(24): 5316-5326.
[6] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[7] XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications [J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004.
[8] CHEN XiaoHong,HE JieLi,SHI TianTian,SHAO HuanHuan,WANG HaiGang,CHEN Ling,GAO ZhiJun,WANG RuiYun,QIAO ZhiJun. Developing SSR Markers of Proso Millet Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2020, 53(10): 1940-1949.
[9] CAO XueTao, PEI ShengWei, ZHANG Jin, LI FaDi, LI Gang, LI WanHong, YUE XiangPeng. Screening of Y Chromosome Specific Primers and Y-SNPs in Sheep [J]. Scientia Agricultura Sinica, 2018, 51(15): 2990-2999.
[10] GAO XiaoLi, HU Jiang, GUO ShuZhen, SHI BinGang, XIE JianPeng, LUO YuZhu, WANG JiQing, MU YongJuan. Polymorphisms of DGAT1 Gene and Their Association with Milk Quality Traits in Yak [J]. Scientia Agricultura Sinica, 2017, 50(16): 3215-3225.
[11] LIU LiNa, YANG Jing, XU LiuYan, LI ChengYun. Genetic Diversity Analysis of Pi-ta Gene 3′-UTR in Rice Landraces [J]. Scientia Agricultura Sinica, 2017, 50(15): 2851-2860.
[12] MA Xiao-meng, XUAN Jun-li,WANG Hui-hua,YUAN Ze-hu, WU Ming-ming, ZHU Cai-ye, LIU Rui-zao, WEI Cai-hong, ZHAO Fu-ping, DU Li-xin, ZHANG Li. Association of the RIPK2 Gene Genetic Variation with Ujumqin Sheep Growth Traits [J]. Scientia Agricultura Sinica, 2016, 49(7): 1391-1407.
[13] WU Yi-chen, DU Xing, LI Ping-hua, WU Yan, WANG Jun-shun, LIU Hong-lin, LI Qi-fa. Sequence Cloning, Tissue Expression Profile and Polymorphism of VRTN Gene in Suhuai Pig [J]. Scientia Agricultura Sinica, 2016, 49(18): 3639-3648.
[14] YAO Qi-lun, CHEN Fa-bo, LIU Hong-fang, FANG Ping, ZHAO Cai-fang. B Chromosome Polymorphisms in Maize (Zea mays L.) Landrace Populations from Southwest China [J]. Scientia Agricultura Sinica, 2015, 48(14): 2697-2704.
[15] YIN Jin-Feng-1, NI Rong-1, WANG Qing-Zeng-1, SUN Wei-1, DING Jia-Tong-1, ZHANG You-Fa-2, CHEN Ling-2, WU Wen-Zhong-2, ZHOU Hong-3. The Genetic Polymorphism, Expression of BMP7 Gene and Its Relationship with Lamb Skin Follicle Traits in Hu Sheep [J]. Scientia Agricultura Sinica, 2014, 47(9): 1811-1818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!