Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Genome-wide investigation of defensin genes in apple (Malus×domestica Borkh.) and in vivo analyses show that MdDEF25 confers resistance to Fusarium solani 
Mengli Yang, Jian Jiao, Yiqi Liu, Ming Li, Yan Xia, Feifan Hou, Chuanmi Huang, Hengtao Zhang, Miaomiao Wang, Jiangli Shi, Ran Wan, Kunxi Zhang, Pengbo Hao, Tuanhui Bai, Chunhui Song, Jiancan Feng, Xianbo Zheng
2025, 24 (1): 161-175.   DOI: 10.1016/j.jia.2024.03.039
Abstract62)      PDF in ScienceDirect      
Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation.  It can be caused by various pathogens, and Fusarium solani is the main pathogen.  Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees, significantly impacting the quality and yield of apples.  In this study, we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F. solani.  The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus.  Plant defensins are antimicrobial peptides, but their roles during Fsolani infection remain unclear.  We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues.  In wild-type apple rootstock inoculated with Fsolani, the root surface cells experienced severe damage, and showed significant differences in the total root length, total root projection area, root tips, root forks, and total root surface area compared to the control group.  qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to Fsolani infection in apples.  Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane.  Overexpressing the MdDEF25-YFP fusion gene enhanced resistance against Fsolani in apple, providing a new strategy for the future prevention and biological control of apple replant disease. 


Reference | Related Articles | Metrics

Discovery and structure-activity relationship studies of novel tetrahydro-β-carboline derivatives as apoptosis initiators for treating bacterial infections

Shanshan Su, Hongwu Liu, Junrong Zhang, Puying Qi, Yue Ding, Ling Zhang, Linli Yang, Liwei Liu, Xiang Zhou, Song Yang
2024, 23 (4): 1259-1273.   DOI: 10.1016/j.jia.2023.05.031
Abstract140)      PDF in ScienceDirect      
Developing and excavating new agrochemicals with highly active and safe is an important tactic for protecting crop health and food safety.  In this paper, to discover the new bactericide candidates, we designed, prepared a new type of 1,2,3,4-tetrahydro-carboline (THC) derivatives and evaluated the in vitro and in vivo bioactivities against the Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa).  The in vitro bioassay results exhibited that most title molecules possessed good activity toward the three plant pathogenic bacteria, the compound A17 showed the most active against Xoo and Xac with EC50 values of 7.27 and 4.89 mg mL–1 respectively, and compound A8 exhibited the best inhibitory activity against Psa with EC50 value of 4.87 mg mL–1.  Pot experiments showed that compound A17 exhibited excellent in vivo antibacterial activities to manage rice bacterial leaf blight and citrus bacterial canker, with protective efficiencies of 52.67 and 79.79% at 200 mg mL–1, respectively.  Meanwhile, compound A8 showed good control efficiency (84.31%) against kiwifruit bacterial canker at 200 mg mL–1.  Antibacterial mechanism suggested that these compounds could interfere with the balance of the redox system, damage the cell membrane, and induce the apoptosis of Xoo cells.  Taken together, our study revealed that tetrahydro-β-carboline derivatives could be a promising candidate model for novel broad-spectrum bactericides.
Reference | Related Articles | Metrics

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L.

Wei Huang, Ruyu Jiao, Hongtao Cheng, Shengli Cai, Jia Liu, Qiong Hu, Lili Liu, Bao Li, Tonghua Wang, Mei Li, Dawei Zhang, Mingli Yan
2024, 23 (2): 724-730.   DOI: 10.1016/j.jia.2023.05.001
Abstract187)      PDF in ScienceDirect      
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.  In the present study, we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.  Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.  Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.  The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development, and thereby causing the yellow seed trait in Bnapus.  These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.
Reference | Related Articles | Metrics
A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.
WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei
2023, 22 (7): 2000-2014.   DOI: 10.1016/j.jia.2022.10.007
Abstract291)      PDF in ScienceDirect      
Plant architecture and leaf color are important factors influencing cotton fiber yield. In this study, based on genetic analysis, stem paraffin sectioning, and phytohormone treatments, we showed that the dwarf-red (DR) cotton mutant is a gibberellin-sensitive mutant caused by a mutation in a single dominant locus, designated GhDR. Using bulked segregant analysis (BSA) and genotyping by target sequencing (GBTS) approaches, we located the causative mutation to a ~197-kb genetic interval on chromosome A09 containing 25 annotated genes. Based on gene annotation and expression changes between the mutant and normal plants, GH_A09G2280 was considered to be the best candidate gene responsible for the dwarf and red mutant phenotypes. A 2-nucleotide deletion was found in the coding region of GhDR/GH_A09G2280 in the DR mutant, which caused a frameshift and truncation of GhDR. GhDR is a homolog of Arabidopsis AtBBX24, and encodes a B-box zinc finger protein. The frameshift deletion eliminated the C-terminal nuclear localization domain and the VP domain of GhDR, and altered its subcellular localization. A comparative transcriptome analysis demonstrated downregulation of the key genes involved in gibberellin biosynthesis and the signaling transduction network, as well as upregulation of the genes related to gibberellin degradation and the anthocyanin biosynthetic pathway in the DR mutant. The results of this study revealed the potential molecular basis by which plant architecture and anthocyanin accumulation are regulated in cotton.  

Reference | Related Articles | Metrics
Effect of high-molecular-weight glutenin subunit Dy10 on wheat dough properties and end-use quality
WANG Yan, GUO Zhen-ru, CHEN Qing, LI Yang, ZHAO Kan, WAN Yong-fang, Malcolm J. HAWKESFORD, JIANG Yun-feng, KONG Li, PU Zhi-en, DENG Mei, JIANG Qian-tao, LAN Xiu-jin, WANG Ji-rui, CHEN Guo-yue, MA Jian, ZHENG You-liang, WEI Yu-ming, QI Peng-fei
2023, 22 (6): 1609-1617.   DOI: 10.1016/j.jia.2022.08.041
Abstract423)      PDF in ScienceDirect      
High-molecular-weight glutenin subunits (HMW-GSs) are the most critical grain storage proteins that determine the unique processing qualities of wheat. Although it is a part of the superior HMW-GS pair (Dx5+Dy10), the contribution of the Dy10 subunit to wheat processing quality remains unclear. In this study, we elucidated the effect of Dy10 on wheat processing quality by generating and analyzing a deletion mutant (with the Dy10-null allele), and by elucidating the changes to wheat flour following the incorporation of purified Dy10. The Dy10-null allele was transcribed normally, but the Dy10 subunit was lacking. These findings implied that the Dy10-null allele reduced the glutenin:gliadin ratio and negatively affected dough strength (i.e., Zeleny sedimentation value, gluten index, and dough development and stability times) and the bread-making quality; however, it positively affected the biscuit-making quality. The incorporation of various amounts of purified Dy10 into wheat flour had a detrimental effect on biscuit-making quality. The results of this study demonstrate that the Dy10 subunit is essential for maintaining wheat dough strength. Furthermore, the Dy10-null allele may be exploited by soft wheat breeding programs.
Reference | Related Articles | Metrics

Brown planthopper E78 regulates moulting and ovarian development by interacting with E93

ZHENG Shi-wen, JIANG Xiao-juan, MAO Yi-wen, LI Yan, GAO Han, LIN Xin-da
2023, 22 (5): 1455-1464.   DOI: 10.1016/j.jia.2022.08.106
Abstract218)      PDF in ScienceDirect      

The brown planthopper (Nilaparvata lugens) is the main migratory pest in many rice growing areas in Asia.  E78 is a member of the nuclear hormone receptor superfamily which plays an important role in egg development and maternal regulation of early embryogenesis.  In this study, brown planthopper E78 (NlE78) was cloned, and the predicted amino acid sequence showed that it contains two conserved domains: NR-LBD and DBD.  qRT-PCR showed that the expression of NlE78 is high in the fifth instar nymphs and the ovaries of females.  After downregulation of NlE78, the rate of moulting failure (33.2%) increased significantly, and ovarian development was delayed.  However, when NlE78 was downregulated together with NlE93, the emergence rate increased significantly (78.79%), and ovarian development was similar to that when NlE78 was downregulated but not delayed.  A co-immunoprecipitation experiment showed that NlE78 interacts with NlE93, a crucial downstream transcription factor of the ecdysone signalling pathway.  Cellular localization by immunofluorescence revealed that NlE78 and NlE93 are expressed in the nucleus.  This study indicates that NlE78 regulates ovarian development and moulting, possibly through its interaction with NlE93.  This study is of great significance for the development of new pesticides and control methods based on newly discovered targets.

Reference | Related Articles | Metrics

Cassava MeRS40 is required for the regulation of plant salt tolerance

MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu
2023, 22 (5): 1396-1411.   DOI: 10.1016/j.jia.2023.04.003
Abstract318)      PDF in ScienceDirect      

Soil salinity affects the expression of serine/arginine-rich (SR) genes and isoforms by alternative splicing, which in turn regulates the adaptation of plants to stress.  We previously identified the cassava spliceosomal component 35 like (SCL) and SR subfamilies, belonging to the SR protein family, which are extensively involved in responses to abiotic stresses.  However, the post-transcriptional regulatory mechanism of cassava arginine/serine-rich (RS) subfamily in response to salt stress remains to be explored.  In the current study, we identified 37 genes of the RS subfamily from 11 plant species and systematically investigated the transcript levels of the RS40 and RS31 genes under diverse abiotic stress conditions.  Subsequently, an analysis of the conserved protein domains revealed that plant RS subfamily genes were likely to preserve their conserved molecular functions and played critical functional roles in responses to abiotic stresses.  Importantly, we found that overexpression of MeRS40 in Arabidopsis enhanced salt tolerance by maintaining reactive oxygen species homeostasis and up-regulating the salt-responsive genes.  However, overexpression of MeRS40 gene in cassava reduced salt tolerance due to the depression of its endogenous gene expression by negative autoregulation of its own pre-mRNA.  Moreover, the MeRS40 protein interacted with MeU1-70Ks (MeU1-70Ka and MeU1-70Kb) in vivo and in vitro, respectively.  Therefore, our findings highlight the critical role of cassava SR proteins in responses to salt stress in plants. 

Reference | Related Articles | Metrics
Chromosome-level genome assembly of Cylas formicarius provides insights into its adaptation and invasion mechanisms
HUA Jin-feng, ZHANG Lei, HAN Yong-hua, GOU Xiao-wan, CHEN Tian-yuan, HUANG Yong-mei, LI Yan-qing, MA Dai-fu, LI Zong-yun
2023, 22 (3): 825-843.   DOI: 10.1016/j.jia.2022.08.027
Abstract265)      PDF in ScienceDirect      

Cylas formicarius is one of the most important pests of sweet potato worldwide, causing considerable ecological and economic damage.  This study improved the effect of comprehensive management and understanding of genetic mechanisms by examining the functional genomics of Cformicarius.  Using Illumina and PacBio sequencing, this study obtained a chromosome-level genome assembly of adult weevils from lines inbred for 15 generations.  The high-quality assembly obtained was 338.84 Mb, with contig and scaffold N50 values of 14.97 and 34.23 Mb, respectively.  In total, 157.51 Mb of repeat sequences and 11 907 protein-coding genes were predicted.  A total of 337.06 Mb of genomic sequences was located on the 11 chromosomes, accounting for 99.03% of the total length of the associated chromosome.  Comparative genomic analysis showed that Cformicarius was sister to Dendroctonus ponderosae, and Cformicarius diverged from Dponderosae approximately 138.89 million years ago (Mya).  Many important gene families expanded in the Cformicarius genome were involved in the detoxification of pesticides, tolerance to cold stress and chemosensory system.  To further study the role of odorant-binding proteins (OBPs) in olfactory recognition of Cformicarius, the binding assay results indicated that CforOBP4–6 had strong binding affinities for sex pheromones and other ligands.  The high-quality Cformicarius genome provides a valuable resource to reveal the molecular ecological basis, genetic mechanism, and evolutionary process of major agricultural pests; it also offers new ideas and new technologies for ecologically sustainable pest control.

Reference | Related Articles | Metrics
A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism
ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan
2023, 22 (3): 799-811.   DOI: 10.1016/j.jia.2022.08.117
Abstract235)      PDF in ScienceDirect      

Meloidogyne incognita is a devastating plant-parasitic nematode.  Effectors play important roles during the stages of nematodes infection and parasitism, but their molecular functions remain largely unknown.  In this study, we characterized a new effector, Minc03329, which contains signal peptide for secretion and a C-type lectin domain.  The yeast signal sequence trap experiments indicated that the signal peptide of Minc03329 is functional.  In situ hybridization showed that Minc03329 was specifically expressed in the subventral esophageal gland.  Real-time qPCR confirmed that the expression level of Minc03329 transcript was significantly increased in pre-parasitic and parasitic second-stage juveniles (pre-J2s and par-J2s).  Tobacco rattle virus (TRV)-mediated gene silencing of Minc03329 in host plants largely reduced the pathogenicity of nematodes.  On the contrary, ectopic expression of Minc03329 in Arabidopsis thaliana significantly increased plant susceptibility to nematodes.  Transient expression of Minc03329 in Nicotiana benthamiana leaves suppressed the programmed cell death triggered by the pro-apoptotic protein BAX.  Moreover, the transcriptome analysis of Minc03329-transgenic Arabidopsis and wild type revealed that many defense-related genes were significantly down-regulated.  Interestingly, some different expressed genes were involved in the formation of nematode feeding sites.  These results revealed that Minc03329 is an important effector for Mincognita, suppressing host defense response and promoting pathogenicity.

Reference | Related Articles | Metrics
Optimizing water management practice to increase potato yield and water use efficiency in North China
LI Yang, WANG Jing, FANG Quan-xiao, HU Qi, HUANG Ming-xia, CHEN Ren-wei, ZHANG Jun, HUANG Bin-xiang, PAN Zhi-hua, PAN Xue-biao
2023, 22 (10): 3182-3192.   DOI: 10.1016/j.jia.2023.04.027
Abstract141)      PDF in ScienceDirect      

Potato is one of the staple food crops in North China.  However, potato production in this region is threatened by the low amount and high spatial-temporal variation of precipitation.  Increasing yield and water use efficiency (WUE) of potato by various water management practices under water resource limitation is of great importance for ensuring food security in China.  However, the contributions of different water management practices to yield and WUE of potato have been rarely investigated across North China’s potato planting region.  Based on meta-analysis of field experiments from the literature and model simulation, this study quantified the potential yields of potatoes without water and fertilizer limitation, and yield under irrigated and rainfed conditions, and the corresponding WUEs across four potato planting regions including the Da Hinggan Mountains (DH), the Foothills of Yanshan hilly (YH), the North foot of the Yinshan Mountains (YM), and the Loess Plateau (LP) in North China.  Simulated average potential potato tuber dry weight yield by the APSIM-Potato Model was 12.4 t ha–1 for the YH region, 11.4 t ha–1 for the YM region, 11.2 t ha–1 for the DH region, and 10.7 t ha–1 for the LP region, respectively.  Observed rainfed potato tuber dry weight yield accounted for 61, 30, 28 and 24% of the potential yield in the DH, YH, YM, and LP regions.  The maximum WUE of 2.2 kg m–3 in the YH region, 2.1 kg m–3 in the DH region, 1.9 kg m–3 in the YM region and 1.9 kg m–3 in the LP region was achieved under the potential yield level.  Ridge-furrow planting could boost yield by 8–49% and WUE by 2–36% while ridge-furrow planting with film mulching could boost yield by 35–89% and WUE by 7–57% across North China.  Our study demonstrates that there is a large potential to increase yield and WUE simultaneously by combining ridge-furrow planting with film mulching and supplemental irrigation in different potato planting regions with limited water resources.

Reference | Related Articles | Metrics
Dek219 encodes the DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize
XIE Si-di, TIAN Ran, ZHANG Jun-jie, LIU Han-mei, LI Yang-ping, HU Yu-feng, YU Guo-wu, HUANG Yu-bi, LIU Ying-hong
2023, 22 (10): 2961-2980.   DOI: 10.1016/j.jia.2023.02.024
Abstract369)      PDF in ScienceDirect      

Chromatin accessibility plays a vital role in gene transcriptional regulation.  However, the regulatory mechanism of chromatin accessibility, as well as its role in regulating crucial gene expression and kernel development in maize (Zea mays) are poorly understood.  In this study, we isolated a maize kernel mutant designated as defective kernel219 (dek219), which displays opaque endosperm and embryo abortion.  Dek219 encodes the DICER-LIKE1 (DCL1) protein, an essential enzyme in miRNA biogenesis.  Loss of function of Dek219 results in significant reductions in the expression levels of most miRNAs and histone genes.  Further research showed that the Heat shock transcription factor17 (Hsf17)-Zm00001d016571 module may be one of the factors affecting the expression of histone genes.  Assay results for transposase-accessible chromatin sequencing (ATAC-seq) indicated that the chromatin accessibility of dek219 is altered compared with that of wild type (WT), which may regulate the expression of crucial genes in kernel development.  By analyzing differentially expressed genes (DEGs) and differentially accessible chromatin regions (ACRs) between WT and dek219, we identified 119 candidate genes that are regulated by chromatin accessibility, including some reported to be crucial genes for kernel development.  Taken together, these results suggest that Dek219 affects chromatin accessibility and the expression of crucial genes that are required for maize kernel development

Reference | Related Articles | Metrics
Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin
CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun
2023, 22 (1): 31-40.   DOI: 10.1016/j.jia.2022.08.101
Abstract494)      PDF in ScienceDirect      
The trichomes of rice leaves are formed by the differentiation and development of epidermal cells.  Plant trichomes play an important role in stress resistance and protection against direct ultraviolet irradiation.  However, the development of rice trichomes remains poorly understood.  In this study, we conducted ethylmethane sulfonate (EMS)-mediated mutagenesis on the wild-type (WT) indica rice ‘Xida 1B’.  Phenotypic analysis led to the screening of a mutant that is defective in trichome development, designated lhl1 (less hairy leaf 1).  We performed map-based cloning and localized the mutated gene to the 70-kb interval between the molecular markers V-9 and V-10 on chromosome 2.  The locus LOC_Os02g25230 was identified as the candidate gene by sequencing.  We constructed RNA interference (LHL1-RNAi) and overexpression lines (LHL1-OE) to verity the candidate gene.  The leaves of the LHL1-RNAi lines showed the same trichome developmental defects as the lhl1 mutant, whereas the trichome morphology on the leaf surface of the LHL1-OE lines was similar to that of the WT, although the number of trichomes was significantly higher.  Quantitative real-time PCR (RT-qPCR) analysis revealed that the expression levels of auxin-related genes and positive regulators of trichome development in the lhl1 mutant were down-regulated compared with the WT.  Hormone response analysis revealed that LHL1 expression was affected by auxin.  The results indicate that the influence of LHL1 on trichome development in rice leaves may be associated with an auxin pathway.
Reference | Related Articles | Metrics
Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses
ZENG Xian-ying, HE Xin-wen, MENG Fei, MA Qi, WANG Yan, BAO Hong-mei, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, LI Yan-bing, TIAN Guo-bin, CHEN Hua-lan
2022, 21 (7): 2086-2094.   DOI: 10.1016/S2095-3119(22)63904-2
Abstract761)      PDF in ScienceDirect      

Some H5 viruses isolated in poultry or wild birds between 2020 and 2021 were found to be antigenically different from the vaccine strains (H5-Re11 and H5-Re12) used in China.  In this study, we generated three new recombinant vaccine seed viruses by using reverse genetics and used them for vaccine production.  The vaccine strain H5-Re13 contains the hemagglutinin (HA) and neuraminidase (NA) genes of an H5N6 virus that bears the clade 2.3.4.4h HA gene, H5-Re14 contains the HA and NA genes of an H5N8 virus that bears the clade 2.3.4.4b HA gene, and H7-Re4 contains the HA and NA genes of H7N9 virus detected in 2021.  We evaluated the protective efficacy of the novel H5/H7 trivalent inactivated vaccine in chickens, ducks, and geese.  The inactivated vaccine was immunogenic and induced substantial antibody responses in the birds tested.  Three weeks after vaccination, chickens were challenged with five different viruses detected in 2020 and 2021: three viruses (an H5N1 virus, an H5N6 virus, and an H5N8 virus) bearing the clade 2.3.4.4b HA gene, an H5N6 virus bearing the clade 2.3.4.4h HA gene, and an H7N9 virus.  All of the control birds shed high titers of virus and died within 4 days post-challenge, whereas the vaccinated chickens were completely protected from these viruses.  Similar protective efficacy against H5 viruses bearing the clade 2.3.4.4h or 2.3.4.4b HA gene was observed in ducks and geese.  Our study indicates that the newly updated H5/H7 vaccine can provide solid protection against the H5 and H7N9 viruses that are currently circulating in nature.  

Reference | Related Articles | Metrics
Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple
HU Ling-yu, YUE Hong, ZHANG Jing-yun, LI Yang-tian-su, GONG Xiao-qing, ZHOU Kun, MA Feng-wang
2022, 21 (7): 1968-1981.   DOI: 10.1016/S2095-3119(21)63822-4
Abstract260)      PDF in ScienceDirect      
Myo-inositol and its derivatives play important roles in the tolerance of higher plants to abiotic stresses, and myo-inositol-1-phosphate synthase (MIPS) is the rate-limiting enzyme in myo-inositol biosynthesis.  In this study, we found that increased myo-inositol biosynthesis enhanced drought tolerance in MdMIPS1-overexpressing apple lines under short-term progressive drought stress.  The effect of myo-inositol appeared to be mediated by the increased accumulation of osmoprotectants such as glucose, sucrose, and proline, and by the increased activities of antioxidant enzymes that eliminate reactive oxygen species.  Moreover, enhanced water-use efficiency (WUE) was observed in MdMIPS1-overexpressing apple lines under long-term moderate water deficit conditions that mimicked the water availability in the soil of the Loess Plateau.  Enhanced WUE may have been associated with the synergistic regulation of osmotic balance and stomatal aperture mediated by increased myo-inositol biosynthesis.  Taken together, our findings shed light on the positive effects of MdMIPS1-mediated myo-inositol biosynthesis on drought tolerance and WUE in apple.
Reference | Related Articles | Metrics
The rhizospheric microbiome becomes more diverse with maize domestication and genetic improvement
HUANG Jun, LI Yun-feng, MA Yuan-ying, LI Yan-sheng, JIN Jian, LIAN Teng-xiang
2022, 21 (4): 1188-1202.   DOI: 10.1016/S2095-3119(21)63633-X
Abstract188)      PDF in ScienceDirect      
Domestication and genetic improvement of maize improve yield and stress tolerance due to changes in morphological and physiological properties, which likely alter rhizosphere microbial diversity.  Understanding how the evolution of maize germplasm impacts its rhizobacterial traits during the growth stage is important for optimizing plant-microbe associations and obtaining yield gain in domesticated germplasms.  In this study, a total of nine accessions representing domestication and subsequent genetic improvement were selected.  We then sequenced the plant DNA and rhizobacterial DNA of teosinte, landraces and inbred lines at the seedling, flowering and maturity stages in a field trial.  Moreover, the soil chemical properties were determined at the respective stages to explore the associations of soil characteristics with bacterial community structures.  The results showed that domestication and genetic improvement increased the rhizobacterial diversity and substantially altered the rhizobacterial community composition.  The core microbiome in the rhizosphere differed among germplasm groups.  The co-occurrence network analysis demonstrated that the modularity in the bacterial network of the inbred lines was greater than those of teosinte and the landraces.  In conclusion, the increased diversity of the rhizobacterial community with domestication and genetic improvement may improve maize resilience to biotic stresses and soil nutrient availability to plants. 
Reference | Related Articles | Metrics
QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean
TIAN Yu, YANG Lei, LU Hong-feng, ZHANG Bo, LI Yan-fei, LIU Chen, GE Tian-li, LIU Yu-lin, HAN Jia-nan, LI Ying-hui, QIU Li-juan
2022, 21 (4): 933-946.   DOI: 10.1016/S2095-3119(21)63693-6
Abstract241)      PDF in ScienceDirect      
Plant height is an important agronomic trait, which is governed by multiple genes with major or minor effects.  Of numerous QTLs for plant height reported in soybean, most are in large genomic regions, which results in a still unknown molecular mechanism for plant height.  Increasing the density of molecular markers in genetic maps will significantly improve the efficiency and accuracy of QTL mapping.  This study constructed a high-density genetic map using 4 011 recombination bin markers developed from whole genome re-sequencing of 241 recombinant inbred lines (RILs) and their bi-parents, Zhonghuang 13 (ZH) and Zhongpin 03-5373 (ZP).  The total genetic distance of this bin map was 3 139.15 cM, with an average interval of 0.78 cM between adjacent bin markers.  Comparative genomic analysis indicated that this genetic map showed a high collinearity with the soybean reference genome.  Based on this bin map, nine QTLs for plant height were detected across six environments, including three novel loci (qPH-b_11, qPH-b_17 and qPH-b_18).  Of them, two environmentally stable QTLs qPH-b_13 and qPH-b_19-1 played a major role in plant height, which explained 10.56–32.7% of the phenotypic variance.  They were fine-mapped to 440.12 and 237.06 kb region, covering 54 and 28 annotated genes, respectively.  Via the function of homologous genes in Arabidopsis and expression analysis, two genes of them were preferentially predicted as candidate genes for further study.
Reference | Related Articles | Metrics
Factors influencing seed reserve utilization during seedling establishment in maize inbred lines
LI Min, WEN Da-xing, SUN Qing-qing, WU Cheng-lai, LI Yan, ZHANG Chun-qing
2022, 21 (3): 677-684.   DOI: 10.1016/S2095-3119(21)63608-0
Abstract158)      PDF in ScienceDirect      
Strong seedlings are essential for high yield.  To explore the foundation of strong seedlings, we investigated various factors influencing the conversion and distribution of seed storage reserves during seedling establishment in maize inbred lines.  Three maize inbred lines were used to explore the effects of seed size, seed vigor, illumination duration, temperature, water content, and salt concentration of the seedling medium on the utilization of seed storage reserves during seedling establishment.  The results showed that the conversion rate of small seeds was 3.69 to 17.71% higher than that of large seeds.  Moreover, prolonged illumination time was conducive to the formation of strong seedlings.  However, low temperature, drought stress and salt stress reduced the conversion rate of seed storage reserves and increased the root/shoot ratio.  These results could be used to guide field management during seedling emergence and develop improved germplasm with a high conversion rate of seed storage reserves.
Reference | Related Articles | Metrics
Identification and validation of novel loci associated with wheat quality through a genome-wide association study
PU Zhi-en, YE Xue-ling, LI Yang, SHI Bing-xin, GUO Zhu, DAI Shou-fen, MA Jian, LIU Ze-hou, JIANG Yun-feng, LI Wei, JIANG Qian-tao, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang
2022, 21 (11): 3131-3147.   DOI: 10.1016/j.jia.2022.08.085
Abstract203)      PDF in ScienceDirect      
Understanding the genetic basis of quality-related traits contributes to the improvement of grain protein concentration (GPC), grain starch concentration (GSC), and wet gluten concentration (WGC) in wheat, a genome-wide association study (GWAS) based on a mixed linear model (MLM) was performed on the 236 wheat accessions including 160 cultivars and 76 landraces using 55K single nucleotide polymorphism (SNP) array in multiple environments. A total of twelve stable QTL/SNPs were identified to control different quality traits in this populations at least two environments under stripe rust stress; three, seven and two QTLs associated with GPC, GSC, and WGC were characterized respectively and located on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 5D, and 7D with the range of phenotypic variation explained (PVE) from 4.2 to 10.7%. Compared with the previously reported QTLs/genes, five QTLs (QGsc.sicau-1BL, QGsc.sicau-1DS, QGsc.sicau-2DL.1, QGsc.sicau-2DL.2, QWgc.sicau-5DL) were potentially novel. KASP markers for SNPs AX-108770574 and AX-108791420 on chromosome on 5D associated with wet gluten concentration were successfully developed. Phenotype of the cultivars containing the A-allele in AX-108770574 and T-allele in AX-108791420 were extremely significantly (P<0.01) higher than that of the landraces containing the G-allele or C-allele of wet gluten concentration in each of the environments. The developed and validated KASP markers could be utilized in molecular breeding aiming to improve the quality in wheat.
Reference | Related Articles | Metrics
Constructing the wolfberry (Lycium spp.) genetic linkage map using AFLP and SSR markers
YIN Yue, AN Wei, ZHAO Jian-hua, LI Yan-long, FAN Yun-fang, CHEN Jin-huan, CAO You-long, ZHAN Xiang-qiang
2022, 21 (1): 131-138.   DOI: 10.1016/S2095-3119(21)63610-9
Abstract165)      PDF in ScienceDirect      
Genetic linkage maps are important for quantitative trait locus (QTL) and marker-assisted selection breeding.  The wolfberry (Lycium spp.) is an important food and traditional medicine in China.  However, few construction genetic linkage maps have been reported because of the lack of genomic and genetic resources.  In this study, a population of 89 F1 seedings was derived from a cross between two heterozygous parents, L. chinense var. potaninii ‘BF-01’ (female) and L. barbarum var. auranticarpum ‘NH-01’ (male), in order to construct a genetic linkage map using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers based on the double pseudo-test cross mapping strategy.  The resulting genetic map consisted of 165 markers (74 AFLPs and 91 SSRs) distributed across 12 linkage groups and spanned a total length of 557.6 cM with an average distance of 3.38 cM between adjacent markers.  The 12 linkage groups contained 3 to 21 markers and ranged in length from 8.6 to 58.3 cM.  Twenty-nine segregated markers distributed in the map were mainly located on LG4 and LG9 linkage groups at P<0.05.  This is the first linkage map of Lycium species using SSR and AFLP markers, which can serve as basis for improving genes and selective breeding of the genome assembly.
Reference | Related Articles | Metrics
Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass
LI Yan-yan, GUO Li-na, LIANG Cheng-zhen, MENG Zhi-gang, Syed Tahira, GUO San-dui, ZHANG Rui
2022, 21 (1): 49-59.   DOI: 10.1016/S2095-3119(20)63438-4
Abstract169)      PDF in ScienceDirect      
Elevated activities of cytosolic fructose-1,6-bisphosphatase (cyFBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) are associated with higher yields in plants.  In this study, the expression levels of the cyFBPase and SBPase genes were increased by overexpressing rape (Brassica napus) cDNA in tobacco (Nicotiana tabacum) plants.  The transgenic plants co-expressing cyFBPase and SBPase (TpFS), or expressing single cyFBPase (TpF) or SBPase (TpS) had 1.77-, 1.55-, 1.23-fold cyFBPase and 1.45-, 1.12-, 1.36-fold SBPase activities as compared to the wild-type (WT), respectively.  Photosynthesis rates of TpF, TpS and TpFS increased 4, 20 and 25% compared with WT plants.  The SBPase and cyFBPase positively regulated each other and functioned synergistically in transgenic tobacco plants.  In addition, the sucrose contents of the three transgenic plants were higher than that of WT plants.  The starch accumulation of the TpFS and TpS plants was improved by 53 and 37%, but slightly decreased in TpF plants.  Moreover, the transgenic tobacco plants harbouring SBPase and/or cyFBPase genes showed improvements in their growth, biomass, dry weight, plant height, stem diameter, leaf size, flower number, and pod weight.  In conclusion, co-expression of SBPase and cyFBPase may pave a new way for improving crop yield in agricultural applications.
Reference | Related Articles | Metrics
Identification of blast-resistance loci through genome-wide association analysis in foxtail millet (Setaria italica (L.) Beauv.)
LI Zhi-jiang, JIA Guan-qing, LI Xiang-yu, LI Yi-chu, ZHI Hui, TANG Sha, MA Jin-feng, ZHANG Shuo, LI Yan-dong, SHANG Zhong-lin, DIAO Xian-min
2021, 20 (8): 2056-2064.   DOI: 10.1016/S2095-3119(20)63196-3
Abstract198)      PDF in ScienceDirect      
Blast disease caused by the fungus Magnaporthe grisea results in significant yield losses of cereal crops across the world.  To date, very few regulatory genes contributing to blast resistance in grass species have been identified and the genetic basis of blast resistance in cereals remains elusive.  Here, a core collection of foxtail millet (Setaria italica) containing 888 accessions was evaluated through inoculation with the blast strain HN-1 and a genome-wide association study (GWAS) was performed to detect regulators responsible for blast disease resistance in foxtail millet.  The phenotypic variation of foxtail millet accessions inoculated with the blast strain HN-1 indicated that less than 1.60% of the samples were highly resistant, 35.25% were moderately resistant, 57.09% were moderately susceptible, and 6.08% were highly susceptible.  The geographical pattern of blast-resistant samples revealed that a high proportion of resistant accessions were located in lower latitude regions where the foxtail millet growing season has higher rain precipitation.  Using 720 000 SNP markers covering the Setaria genome, GWAS showed that two genomic loci from chromosomes 2 and 9 were significantly associated with blast disease resistance in foxtail millet.  Finally, eight putative genes were identified using rice blast-related transcriptomic data.  The results of this work lay a foundation for the foxtail millet blast resistance biology and provide guidance for breeding practices in this promising crop species and other cereals.
Reference | Related Articles | Metrics
Microbial community dynamics during composting of animal manures contaminated with arsenic, copper, and oxytetracycline
Ebrahim SHEHATA, CHENG Deng-miao, MA Qian-qian, LI Yan-li, LIU Yuan-wang, FENG Yao, JI Zhen-yu, LI Zhao-jun
2021, 20 (6): 1649-1659.   DOI: 10.1016/S2095-3119(20)63290-7
Abstract170)      PDF in ScienceDirect      
Effects of the heavy metal copper (Cu), the metalloid arsenic (As), and the antibiotic oxytetracycline (OTC) on bacterial community structure and diversity during cow and pig manure composting were investigated.  Eight treatments were applied, four to each manure type, namely cow manure with: (1) no additives (control), (2) addition of heavy metal and metalloid, (3) addition of OTC and (4) addition of OTC with heavy metal and metalloid; and pig manure with: (5) no additives (control), (6) addition of heavy metal and metalloid, (7) addition of OTC and (8) addition of OTC with heavy metal and metalloid.  After 35 days of composting, according to the alpha diversity indices, the combination treatment (OTC with heavy metal and metalloid) in pig manure was less harmful to microbial diversity than the control or heavy metal and metalloid treatments.  In cow manure, the treatment with heavy metal and metalloid was the most harmful to the microbial community, followed by the combination and OTC treatments.  The OTC and combination treatments had negative effects on the relative abundance of microbes in cow manure composts.  The dominant phyla in both manure composts included Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria.  The microbial diversity relative abundance transformation was dependent on the composting time.  Redundancy analysis (RDA) revealed that environmental parameters had the most influence on the bacterial communities.  In conclusion, the composting process is the most sustainable technology for reducing heavy metal and metalloid impacts and antibiotic contamination in cow and pig manure.  The physicochemical property variations in the manures had a significant effect on the microbial community during the composting process.  This study provides an improved understanding of bacterial community composition and its changes during the composting process. 
Reference | Related Articles | Metrics
Identification of genes involved in regulating MnSOD2 production and root colonization in Bacillus cereus 905
GAO Tan-tan, DING Ming-zheng, LI Yan, ZENG Qing-chao, WANG Qi
2021, 20 (6): 1570-1584.   DOI: 10.1016/S2095-3119(20)63247-6
Abstract124)      PDF in ScienceDirect      
sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) in Bacillus cereus 905 plays an essential role in antioxidative stress, nutrition utilization, rhizosphere and phyllosphere colonization.  However, the genes involved in regulating the sodA2 expression have not been clearly elucidated in B. cereus.  In this study, a genome-wide random insertion mutagenesis was constructed by using transposon TnYLB-1 to identify novel genes regulating the sodA2 expression.  Seven mutants that changed the sodA2 expression at both mRNA and protein levels were finally obtained.  Sequence analysis and BLAST data showed that the genes disrupted by TnYLB-1 in B. cereus 905 shared high conservations with those in the B. cereus type strain, ATCC 14579.  These genes encode heat-inducible transcription repressor, chloride channel protein, recombinase A, ferrous iron transport protein, nucleoside diphosphate kinase, and histidine ammonia-lyase.  Besides, we also provided the evidence that the genes regulating the sodA2 expression could influence colonization ability of B. cereus 905 on wheat roots.  Specifically, those genes downregulating the sodA2 expression significantly reduced bacterial colonization on wheat roots, and mutants with increased MnSOD2 activities could enhance bacterial population densities on wheat roots to a certain degree.  Our work provided information that multiple genes are involved in MnSOD2 production and wheat root colonization.  The molecular regulatory pathways through which these genes modulate the sodA2 expression and root colonization need to be investigated extensively in the future.
Reference | Related Articles | Metrics
Fertility and biochemical activity in sodic soils 17 years after reclamation with flue gas desulfurization gypsum
ZHAO Yong-gan, WANG Shu-juan, LIU Jia, ZHUO Yu-qun, LI Yan, ZHANG Wen-chao
2021, 20 (12): 3312-3321.   DOI: 10.1016/S2095-3119(20)63446-3
Abstract111)      PDF in ScienceDirect      
Previous studies have mainly focused on changes in soil physical and chemical properties to evaluate the reclamation of sodic soils using flue gas desulfurization (FGD) gypsum.  However, information on the effects of this reclamation method on microbial-based indicators of soil quality is limited, particularly after many years of FGD gypsum application.  This study aimed to investigate the long-term effects of FGD gypsum on soil organic carbon (SOC), nutrients, microbial biomass and enzyme activity.  Data were collected from soils of three exchangeable sodium percentage (ESP) classes (i.e., low-, middle- and high-ESP classes of 6.1–20, 20–30 and 30–78.4%, respectively) 17 years after FGD gypsum treatment in Inner Mongolia, China.  Averaged across the three ESP classes, FGD gypsum application increased the SOC contents at the 0–20 and 20–40-cm soil depths by 18 and 35%, respectively, and increased available potassium at the 0–20-cm soil depth by 51% compared with the no-gypsum controls.  The microbial biomass carbon and microbial biomass nitrogen contents at the 20–40-cm soil depth increased by 69 and 194%, respectively, under FGD gypsum.  Except in the high-ESP class, urease activities in the 0–40 cm soil profile were significantly higher in the FGD gypsum treatments than in the controls.  A significant increase in alkaline phosphatase activity was concentrated in the 20–40 cm soil layer; few classes showed significant increases in catalase and invertase activities in the 0–20 cm soil layer.  Pearson correlation analysis showed that increases in soil fertility and biological activity could be attributed to reductions in electrical conductivity, pH and ESP caused by FGD gypsum application.  These results confirm that FGD gypsum application is a viable strategy for reclaiming sodic soils due to its positive effects on soil fertility and biochemistry and that it may contribute to soil ecosystem sustainability.
 
Reference | Related Articles | Metrics
Protective efficacy of an H5/H7 trivalent inactivated vaccine produced from Re-11, Re-12, and H7-Re2 strains against challenge with different H5 and H7 viruses in chickens
ZENG Xian-ying, CHEN Xiao-han, MA Shu-jie, WU Jiao-jiao, BAO Hong-mei, PAN Shu-xin, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, CHEN Pu-cheng, JIANG Yong-ping, LI Yan-bing, HU Jing-lei, LU Tong, MAO Sheng-gang, GUO Xing-fu, LIU Jing-li, TIAN Guo-bin, CHEN Hua-lan
2020, 19 (9): 2294-2300.   DOI: 10.1016/S2095-3119(20)63301-9
Abstract214)      PDF in ScienceDirect      
We developed an H5/H7 trivalent inactivated vaccine by using Re-11, Re-12, and H7-Re2 vaccine seed viruses, which were generated by reverse genetics and derived their HA genes from A/duck/Guizhou/S4184/2017(H5N6) (DK/GZ/S4184/17) (a clade 2.3.4.4d virus), A/chicken/Liaoning/SD007/2017(H5N1) (CK/LN/SD007/17) (a clade 2.3.2.1d virus), and A/chicken/Guangxi/SD098/2017(H7N9) (CK/GX/SD098/17), respectively.  The protective efficacy of this novel vaccine and that of the recently used H5/H7 bivalent inactivated vaccine against different H5 and H7N9 viruses was evaluated in chickens.  We found that the H5/H7 bivalent vaccine provided solid protection against the H7N9 virus CK/GX/SD098/17, but only 50–60% protection against different H5 viruses.  In contrast, the novel H5/H7 trivalent vaccine provided complete protection against the H5 and H7 viruses tested.  Our study underscores the importance of timely updating of vaccines for avian influenza control.
Reference | Related Articles | Metrics
MmNet: Identifying Mikania micrantha Kunth in the wild via a deep Convolutional Neural Network
QIAO Xi, LI Yan-zhou, SU Guang-yuan, TIAN Hong-kun, ZHANG Shuo, SUN Zhong-yu, YANG Long, WAN Fang-hao, QIAN Wan-qiang
2020, 19 (5): 1292-1300.   DOI: 10.1016/S2095-3119(19)62829-7
Abstract156)      PDF in ScienceDirect      
Mikania micrantha Kunth is an invasive alien weed and known as a plant killer around the world.  Accurately and rapidly identifying M. micrantha in the wild is important for monitoring its growth status, as this helps management officials to take the necessary steps to devise a comprehensive strategy to control the invasive weed in the identified area.  However, this approach still mainly depends on satellite remote sensing and manual inspection.  The cost is high and the accuracy rate and efficiency are low.  We acquired color images of the monitoring area in the wild environment using an Unmanned Aerial Vehicle (UAV) and proposed a novel network -MmNet- based on a deep Convolutional Neural Network (CNN) to identify M. micrantha in the images.  The network consists of AlexNet Local Response Normalization (LRN), along with the GoogLeNet and continuous convolution of VGG inception models.  After training and testing, the identification of 400 testing samples by MmNet is very good, with accuracy of 94.50% and time cost of 10.369 s.  Moreover, in quantitative comparative analysis, the proposed MmNet not only has high accuracy and efficiency but also simple construction and outstanding repeatability.  Compared with recently popular CNNs, MmNet is more suitable for the identification of M. micrantha in the wild.  However, to meet the challenge of wild environments, more M. micrantha images need to be acquired for MmNet training.  In addition, the classification labels need to be sorted in more detail.  Altogether, this research provides some theoretical and scientific basis for the development of intelligent monitoring and early warning systems for M. micrantha and other invasive species. 
Reference | Related Articles | Metrics
Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling
CHEN Yan-hui, YANG Xiao-zhu, LI Zhuang, AN Xiu-hong, MA Ren-peng, LI Yan-qing, CHENG Cun-gang
2020, 19 (10): 2458-2469.   DOI: 10.1016/S2095-3119(20)63303-2
Abstract139)      PDF in ScienceDirect      
Chemical potassium (K) fertilizer is commonly used in apple (Malus domestica L. Borkh) production but K is easily fixed by soil, resulting in reduced K fertilizer utilization and wasted resources.  K-solubilizing bacteria (KSB) can cost-effectively increase the soluble K content in rhizosphere soil.  Therefore, the objectives were to select high-efficiency KSB from apple orchards under various soil management models and evaluate their effects on apple seedling growth.  Maize (Zea mays L.) straw mulching (MSM) increased the total carbon (TC), total nitrogen (TN) and available potassium (AK) in the rhizosphere and improved fruit quality.  The number of KSB in the rhizosphere soil of MSM was 9.5×104 CFU g–1 soil, which was considerably higher than that in the other mulching models.  Fourteen KSB strains were isolated with relative K solubilizing ability ranging from 17 to 30%, and five strains increased the dry weight per apple seedling.  The most efficient strain was identified as Paenibacillus mucilaginosus through morphological observation and sequence analysis of 16S rDNA, named JGK.  After inoculation, the colonization of JGK in soil decreased from 4.0 to 1.5×109 CFU g–1 soil within 28 d.  The growth of the apple seedlings and the K accumulation in apple plants were promoted by irrigation with 50 mL JGK bacterial solution (1×109 CFU mL–1), but there was no significant increase in the AK content of rhizosphere soil.  High-performance liquid phase analysis (HPLC) data showed that the JGK metabolites contained phytohormones and organic acids.  Hence, the JGK strain promoted the growth of two-month-old apple seedlings by stimulating function of the produced phytohormones and enhanced K solubility by acidification for apple seedling uptake.  This study enriches the understanding of KSB and provides an effective means to increase the K utilization efficiency of apple production.
Reference | Related Articles | Metrics
Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen
ZHANG Shui-qin, YUAN Liang, LI Wei, LIN Zhi-an, LI Yan-ting, HU Shu-wen, ZHAO Bing-qiang
2019, 18 (3): 656-666.   DOI: 10.1016/S2095-3119(18)61950-1
Abstract233)      PDF (773KB)(225)      
Humic acid (HA) is a readily available and low-cost material that is used to enhance crop production and reduce nitrogen (N) loss.  However, there is little consensus on the efficacy of different HA components.  In the current study, a soil column experiment was conducted using the 15N tracer technique in Dezhou City, Shandong Province, China, to compare the effects of urea with and without the addition of weathered coal-derived HA components on maize yield and the fate of fertilizer-derived N (fertilizer N).  The HA components were incorporated into urea by blending different HA components into molten urea to obtain the three different types of HA-enhanced urea (HAU).  At harvest, the aboveground dry biomass of plants grown with HAU was enhanced by 11.50–21.33% when compared to that of plants grown with U.  More significantly, the grain yields under the HAU treatments were 5.58–18.67% higher than the yield under the urea treatment.  These higher yields were due to an increase in the number of kernels per plant rather than the weight of individual kernels.  The uptake of fertilizer N under the HAU treatments was also higher than that under the urea treatment by 11.49–29.46%, while the unaccounted N loss decreased by 12.37–30.05%.  More fertilizer-derived N was retained in the 0–30 cm soil layer under the HAU treatments than that under the urea treatment, while less N was retained in the 30–90 cm soil layer.  The total residual amount of fertilizer N in the soil column, however, did not differ significantly between the treatments.  Of the three HAU treatments investigated, the one with an HA fraction derived from extraction with pH values ranging from 6 to 7, resulted in the best improvement in all assessment targets.  This is likely due to the abundance of the COO/C–N=O group in this HA component.
 
Reference | Related Articles | Metrics
Gene mapping and candidate gene analysis of multi-floret spikelet 3 (mfs3) in rice (Oryza sativa L.)
ZHENG Hao, ZHANG Jun, ZHUANG Hui, ZENG Xiao-qin, TANG Jun, WANG Hong-lei, CHEN Huan, LI Yan, LING Ying-hua, HE Guang-hua, LI Yun-feng
2019, 18 (12): 2673-2681.   DOI: 10.1016/S2095-3119(19)62652-3
Abstract164)      PDF in ScienceDirect      
Rice (Oryza sativa L.) is one of the most important food crops worldwide and a model monocot plant for gene function analysis, so it is an ideal system for studying flower development.  This study reports a mutant, named multi-floret spikelet 3 (mfs3), which is related to the spikelet development in rice and derived from the ethylmethane sulfonate (EMS)-treated rice cultivar XIDA 1B.  In mfs3, the main body of palea (bop) was degenerated severely and only glume-like marginal regions of palea (mrp) remained, while other floral organs developed normally, indicating that the palea identity was seriously influenced by the mutation.  It was also observed that the number of floral organs was increased in some spikelets, including 2 lemmas, 4 mrp, 4 lodicules, 8–10 stamens, and 2 pistils, which meant that the spikelet determinacy was lost to some degree in mfs3.  Furthermore, genetic analysis demonstrated that the mfs3 trait was controlled by a single recessive gene.  Using 426 F2 mutants derived from the cross between sterile line 56S and mfs3, the MULTI-FLORET SPIKELET 3 (MFS3) gene was mapped between the molecular markers RM19347 and RM19352 on Chr.6, with a physical distance of 106.3 kb.  Sequencing of candidate genes revealed that an 83-bp fragment loss and a base substitution occurred in the LOC_Os06g04540 gene in the mutant, confirming preliminarily that the LOC_Os06g04540 gene was the MFS3 candidate gene.  Subsequent qPCR analysis showed that the mutation caused the down-regulation of OsMADS1 and FON1 genes, and the up-regulation of OsIDS1 and SNB genes, which are all involved in the regulation of spikelet development.  The MFS3 mutation also significantly reduced the transcription of the REP gene, which is involved in palea development.  These results indicated that the MFS3 gene might be involved in the spikelet meristem determinacy and palea identity by regulating the expression of these related genes.
Reference | Related Articles | Metrics
The effects of soil moisture and salinity as functions of groundwater depth on wheat growth and yield in coastal saline soils
ZHANG He, LI Yan1, MENG Ya-li, CAO Nan, LI Duan-sheng, ZHOU Zhi-guo, CHEN Bing-lin, DOU Fu-gen
2019, 18 (11): 2472-2482.   DOI: 10.1016/S2095-3119(19)62713-9
Abstract121)      PDF in ScienceDirect      
In the coastal saline soils, moisture and salinity are the functions of groundwater depth affecting crop growth and yield. Accordingly, the objectives of this study were to: 1) investigate the combined effects of moisture and salinity stresses on wheat growth as affected by groundwater depth, and 2) find the optimal groundwater depth for wheat growth in coastal saline soils. The groundwater depths (0.7, 1.1, 1.5, 1.9, 2.3, and 2.7 m during 2013–2014 (Y1) and 0.6, 1.0, 1.4, 1.8, 2.2, and 2.6 m during 2014–2015 (Y2)) of the field experiment were maintained by soil columns.  There was a positive correlation between soil moisture and salinity.  Water logging with high salinity (groundwater depth at 0.7 m in Y1 and 0.6 m in Y2) showed a greater decline towards wheat growth than that of slight drought with medium (2.3 m in Y1) or low salinity (2.7 m in Y1, 2.2 and 2.6 m in Y2).  The booting stage was the most sensitive stage of wheat crop under moisture and salinity stresses.  Data showed the most optimal rate of photosynthesis, grain yield, and flour quality were obtained under the groundwater depth (ditch depth) of 1.9 m (standard soil moisture with medium salinity) and 2.3 m (slight drought with medium salinity) in Y1 and 1.8 m (standard soil moisture with medium salinity) and 2.2 m (slight drought with low salinity) in Y2.  The corresponding optimal soil relative moisture content and conductivity with the 1:5 distilled water/soil dilution, in the depth of 0–20 cm and 20–40 cm in coastal saline soils, were equal to 58.67–63.07% and 65.51–72.66% in Y1, 63.09–66.70% and 69.75–74.72% in Y2; 0.86–1.01 dS m–1 and 0.63–0.77 dS m–1 in Y1, 0.57–0.93 dS m–1 and 0.40–0.63 dS m–1 in Y2, respectively.
 
Reference | Related Articles | Metrics