Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (3): 799-811    DOI: 10.1016/j.jia.2022.08.117
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism

ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long#, MAO Zhen-chuan# 

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

根结线虫病是农业生产上的毁灭性病害,每年造成巨大的经济损失。南方根结线虫是一种寄生范围广、危害严重、防治困难的根结线虫,其防治主要依赖化学农药,不仅污染环境、危害人类健康,而且大大增加线虫的抗药性。解析根结线虫的致害分子机制,对于制定环保、经济、高效的防治策略具有重要研究价值。研究发现,根结线虫在寄生过程由食道腺表达、通过口针分泌出许多效应子,在线虫侵染和寄生阶段发挥重要作用。不同种类效应子与寄主植物之间产生错综复杂的相互作用,功能机制有待深入解析。在本研究中,我们鉴定了一种新的南方根结线虫效应子Minc03329,对氨基酸序列分析发现,其包含用于分泌的信号肽序列和一个C型凝集素结构域。酵母信号序列捕获实验表明Minc03329的信号肽是有功能的,具有分泌功能;原位杂交实验结果表明Minc03329在南方根结线虫亚腹食道腺中特异表达;实时荧光定量PCR结果证实 Minc03329 在线虫寄生初期表达量显著升高;病毒介导的基因沉默干扰线虫 Minc03329 表达,显著降低了南方根结线虫的致病性;相反,Minc03329转基因拟南芥接种南方根结线虫后根结数和卵块数显著增加,表明效应子Minc03329在植物细胞中表达,可以显著增加植物对南方根结线虫的敏感性;Minc03329 在本氏烟草叶片细胞中瞬时表达能抑制由小鼠促凋亡蛋白BAX引发的细胞程序性死亡;通过对Minc03329转基因拟南芥和野生型拟南芥进行转录组数据比较分析,发现Minc03329转基因拟南芥中许多防御相关基因表达显着下调;此外,一些差异表达基因可能参与了南方根结线虫摄食位点的形成,但是其分子机制有待深入解析。本研究是在揭示凝集素效应子MiCTL1功能机制后,解析的第二个南方根结线虫凝集素类效应子的功能。验证了凝集素类效应子在线虫与植物互作过程通过抑制植物免疫反应,帮助线虫寄生的分子机制。研究结果为揭示根结线虫致病分子机理,以及根结线虫防治分子靶标利用提供了重要理论依据。


Meloidogyne incognita is a devastating plant-parasitic nematode.  Effectors play important roles during the stages of nematodes infection and parasitism, but their molecular functions remain largely unknown.  In this study, we characterized a new effector, Minc03329, which contains signal peptide for secretion and a C-type lectin domain.  The yeast signal sequence trap experiments indicated that the signal peptide of Minc03329 is functional.  In situ hybridization showed that Minc03329 was specifically expressed in the subventral esophageal gland.  Real-time qPCR confirmed that the expression level of Minc03329 transcript was significantly increased in pre-parasitic and parasitic second-stage juveniles (pre-J2s and par-J2s).  Tobacco rattle virus (TRV)-mediated gene silencing of Minc03329 in host plants largely reduced the pathogenicity of nematodes.  On the contrary, ectopic expression of Minc03329 in Arabidopsis thaliana significantly increased plant susceptibility to nematodes.  Transient expression of Minc03329 in Nicotiana benthamiana leaves suppressed the programmed cell death triggered by the pro-apoptotic protein BAX.  Moreover, the transcriptome analysis of Minc03329-transgenic Arabidopsis and wild type revealed that many defense-related genes were significantly down-regulated.  Interestingly, some different expressed genes were involved in the formation of nematode feeding sites.  These results revealed that Minc03329 is an important effector for Mincognita, suppressing host defense response and promoting pathogenicity.

Keywords:  Meloidogyne incognita       effector        C-type lectin        pathogenicity        plant immunity  
Received: 10 January 2022   Accepted: 21 March 2022

This work was funded by the National Natural Science Foundation of China (31672010 and 31871942), the Beijing Natural Science Foundation, China (6222054), the China Agriculture Research System (CARS-23), and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018MS03083).

About author:  #Correspondence MAO Zhen-chuan, Tel: +86-10-82109545, E-mail:; ZHAO Jian-long, E-mail:

Cite this article: 

ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. 2023. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism. Journal of Integrative Agriculture, 22(3): 799-811.

Abad P, Gouzy J, Aury J, Castagnone-Sereno P, Danchin E G J, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok V C, Caillaud M, Coutinho P M, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone J V, Hamamouch N, Hewezi T, et al. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.
Anders S, Pyl P T, Huber W. 2015. HTSeq - A Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.
Bauters L, Naalden D, Gheysen G. 2017. The distribution of lectins across the phylum nematoda: A genome-wide search. International Journal of Molecular Sciences, 18, 91.
Bellafiore S, Briggs S P. 2010. Nematode effectors and plant responses to infection. Current Opinion in Plant Biology, 13, 442–448.
Brown A C, Harrison L M, Kapulkin W, Jones B F, Sinha A, Savage A, Villalon N, Cappello M. 2007. Molecular cloning and characterization of a C-type lectin from Ancylostoma ceylanicum: Evidence for a role in hookworm reproductive physiology. Molecular and Biochemical Parasitology, 151, 141–147.
Caillaud M, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida Engler J, Abad P, Rosso M, Favery B. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. Journal of Plant Physiology, 165, 104–113.
Castagnone-Sereno P, Danchin E G J, Perfus-Barbeoch L, Abad P. 2013. Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomicera. Annual Review of Phytopathology, 51, 203–220.
Chen J, Lin B, Huang Q, Hu L, Zhuo K, Liao J. 2017. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathogens, 13, e1006301.
Cosgrove D J. 2000. Loosening of plant cell walls by expansins. Nature, 407, 321–326.
Davies K G, Curtis R H C. 2011. Cuticle surface coat of plant-parasitic nematodes. Annual Review of Phytopathology, 49, 135–156.
Eves-Van Den Akker S. 2021. Plant–nematode interactions. Current Opinion in Plant Biology, 62, 102035.
Favery B, Quentin M, Jaubert-Possamai S, Abad P. 2016. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. Journal of Insect Physiology, 84, 60–69.
Ganji S, Jenkins J N, Wubben M J. 2014. Molecular characterization of the reniform nematode C-type lectin gene family reveals a likely role in mitigating environmental stresses during plant parasitism. Gene, 537, 269–278.
Gutjahr C, Paszkowski U. 2009. Weights in the balance: Jasmonic acid and salicylic acid signaling in root-biotroph interactions. Molecular Plant–Microbe Interactions, 22, 763–772.
Haegeman A, Bauters L, Kyndt T, Rahman M M, Gheysen G. 2013. Identification of candidate effector genes in the transcriptome of the rice root knot nematode Meloidogyne graminicola. Molecular Plant Pathology, 14, 379–390.
Harcus Y, Nicoll G, Murray J, Filbey K, Gomez-Escobar N, Maizels R M. 2009. C-type lectins from the nematode parasites Heligmosomoides polygyrus and Nippostrongylus brasiliensis. Parasitology International, 58, 461–470.
Hermsmeier D, Hart J K, Byzova M, Rodermel S R, Baum T J. 2000. Changes in mRNA abundance within Heterodera schachtii-infected roots of Arabidopsis thaliana. Molecular Plant–Microbe Interactions, 13, 309–315.
Hewezi T. 2020. Epigenetic mechanisms in nematode–plant interactions. Annual Review of Phytopathology, 58, 119–138.
Hewezi T, Howe P J, Maier T R, Hussey R S, Mitchum M G, Davis E L, Baum T J. 2010. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiology, 152, 968–984.
Hutangura P, Mathesius U, Jones M G K, Rolfe B G. 1999. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Functional Plant Biology, 26, 221.
Jacobs K A, Collins-Racie L A, Colbert M, Duckett M, Golden-Fleet M, Kelleher K, Kriz R, Lavallie E R, Merberg D, Spaulding V, Stover J, Williamson M J, Mccoy J M. 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene, 198, 289–296.
Jaouannet M, Magliano M, Arguel M J, Gourgues M, Evangelisti E, Abad P, Rosso M N. 2013. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Molecular Plant–Microbe Interactions, 26, 97–105.
Jones J T, Haegeman A, Danchin E G J, Gaur H S, Helder J, Jones M G K, Kikuchi T, Manzanilla-López R, Palomares-Rius J E, Wesemael W M L, Perry R N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.
Langdon W B. 2015. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Mining, 8, 1.
Lee C, Chronis D, Kenning C, Peret B, Hewezi T, Davis E L, Baum T J, Hussey R, Bennett M, Mitchum M G. 2011. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiology, 155, 866–880.
Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang K. 2015. Molecular mechanisms of nematode–nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53, 67–95.
Lin B, Zhuo K, Chen S, Hu L, Sun L, Wang X, Zhang L H, Liao J. 2016. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytologist, 209, 1159–1173.
Mao Z, Zhu P, Liu F, Huang Y, Ling J, Chen G, Yang Y, Feng D, Xie B. 2015. Cloning and functional analyses of pepper CaRKNR involved in Meloidogyne incognita resistance. Euphytica, 205, 903–913.
Mejias J, Bazin J, Truong N M, Chen Y, Marteu N, Bouteiller N, Sawa S, Crespi M D, Vaucheret H, Abad P, Favery B, Quentin M. 2021. The root-knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. New Phytologist, 229, 3408–3423.
Mejias J, Truong N M, Abad P, Favery B, Quentin M. 2019. Plant proteins and processes targeted by parasitic nematode effectors. Frontiers in Plant Science, 10, 970.
Naalden D, Haegeman A, de Almeida-Engler J, Birhane Eshetu F, Bauters L, Gheysen G. 2018. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. Molecular Plant Pathology, 19, 2416–2430.
Ngou B P M, Jones J D G, Ding P. 2021. Plant immune networks. Trends in Plant Science, 27, 255–273.
Niu J, Liu P, Liu Q, Chen C, Guo Q, Yin J, Yang G, Jian H. 2016. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Scientific Reports, 6, 19443.
Osorio M B, Bücker-Neto L, Castilhos G, Turchetto-Zolet A C, Wiebke-Strohm B, Bodanese-Zanettini M H, Margis-Pinheiro M. 2012. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genetics and Molecular Biology, 35, 233–246.
Phani V, Khan M R, Dutta T K. 2021. Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Protection, 144, 105573.
Roze E, Hanse B, Mitreva M, Vanholme B, Bakker J, Smant G. 2007. Mining the secretome of the root-knot nematode Meloidogyne chitwoodi for candidate parasitism genes. Molecular Plant Pathology, 9, 1–10.
Schulenburg H, Hoeppner M P, Weiner J, Bornberg-Bauer E. 2008. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology, 213, 237–250.
Shi Q, Mao Z, Zhang X, Ling J, Lin R, Zhang X, Liu R, Wang Y, Yang Y, Cheng X, Xie B. 2018. The novel secreted meloidogyne incognita effector MiISE6 targets the host nucleus and facilitates parasitism in Arabidopsis. Frontiers in Plant Science, 9, 252.
Song H, Lin B, Huang Q, Sun T, Wang W, Liao J, Zhuo K. 2021. The Meloidogyne javanica effector Mj2G02 interferes with jasmonic acid signalling to suppress cell death and promote parasitism in Arabidopsis. Molecular Plant Pathology, 22, 1288–1301.
Sunde P T, Olsen I, Göbel U B, Theegarten D, Winter S, Debelian G J, Tronstad L, Moter A. 2003. Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology, 149, 1095–1102.
Urwin P E, Lilley C J, Atkinson H J. 2002. Ingestion of Double-Stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant–Microbe Interactions, 15, 747–752.
Verma A, Lee C, Morriss S, Odu F, Kenning C, Rizzo N, Spollen W G, Lin M, Mcrae A G, Givan S A, Hewezi T, Hussey R, Davis E L, Baum T J, Mitchum M G. 2018. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites. New Phytologist, 219, 697–713.
Vieira P, Gleason C. 2019. Plant-parasitic nematode effectors-insights into their diversity and new tools for their identification. Current Opinion in Plant Biology, 50, 37–43.
Wang X, Fan C, Zhang X, Zhu J, Fu Y. 2013. BioVector, a flexible system for gene specific-expression in plants. BMC Plant Biology, 13, 198.
Wang X, Xue B, Dai J, Qin X, Liu L, Chi Y, Jones J T, Li H. 2018. A novel Meloidogyne incognita chorismate mutase effector suppresses plant immunity by manipulating the salicylic acid pathway and functions mainly during the early stages of nematode parasitism. Plant Pathology, 67, 1436–1448.
Wieczorek K, Elashry A, Quentin M, Grundler F M W, Favery B, Seifert G J, Bohlmann H. 2014. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes. Molecular Plant–Microbe Interactions, 27, 901–912.
Williamson V M, Gleason C A. 2003. Plant–nematode interactions. Current Opinion in Plant Biology, 6, 327–333.
Yuan M, Ngou B P M, Ding P, Xin X. 2021. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030.
Zelensky A N, Gready J E. 2005. The C-type lectin-like domain superfamily. FEBS Journal, 272, 6179–6217.
Zhang X, Peng H, Zhu S, Xing J, Li X, Zhu Z, Zheng J, Wang L, Wang B, Chen J, Ming Z, Yao K, Jian J, Luan S, Coleman-Derr D, Liao H, Peng Y, Peng D, Yu F. 2020. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Molecular Plant, 13, 1434–1454.
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H. 2019. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. Journal of Experimental Botany, 70, 5943–5958.
Zhao J, Mejias J, Quentin M, Chen Y, Almeida Engler J, Mao Z, Sun Q, Liu Q, Xie B, Abad P, Favery B, Jian H. 2020. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. New Phytologist, 228, 1417–1430.
Zhao J, Sun Q, Quentin M, Ling J, Abad P, Zhang X, Li Y, Yang Y, Favery B, Mao Z, Xie B. 2021. A Meloidogyne incognita C-type lectin effector targets plant catalases to promote parasitism. New Phytologist, 232, 2124–2137.
Zheng M, Long H, Zhao Y, Li L, Xu D, Zhang H, Liu F, Deng G, Pan Z, Yu M. 2015. RNA-seq based identification of candidate parasitism genes of cereal cyst nematode (Heterodera avenae) during incompatible infection to Aegilops variabilis. PLoS ONE, 10, e141095.
Zhuo K, Chen J, Lin B, Wang J, Sun F, Hu L, Liao J. 2017. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Molecular Plant Pathology, 18, 45–54.
Zhuo K, Naalden D, Nowak S, Xuan Huy N, Bauters L, Gheysen G. 2019. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism. Molecular Plant Pathology, 20, 346–355.

[1] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

[2] HUANG Xin, CHI Yuan-kai, Addisie Abate BIRHAN, ZHAO Wei, QI Ren-de, PENG De-liang. The new effector AbSCP1 of foliar nematode (Aphelenchoides besseyi) is required for parasitism rice[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1084-1093.
No Suggested Reading articles found!