Al Akeel R, Al-Sheikh Y, Mateen A, Syed R, Janardhan K, Gupta V C. 2014. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi Journal of Biological Sciences, 21, 147–151.
Bukhteeva I, Hrunyk N I, Yusypovych Y M, Shalovylo Y I, Kovaleva V, Nesmelova I V. 2022. Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure, 30, 753–762.e5.
Chassagne F, Samarakoon T, Porras G, Lyles J T, Dettweiler M, Marquez L, Salam A M, Shabih S, Farrokhi D R, Quave C L. 2021. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Frontiers in Pharmacology, 11, 1–29.
Chen N, Wu S H, Fu J L, Cao B H, Lei J J, Chen C M, Jin J. 2016. Overexpression of the eggplant (Solanum melongena) NAC family transcription factor smNAC suppresses resistance to bacterial wilt. Scientific Reports, 6, 1–20.
Chen S C, Liu A R, Zou Z R. 2006. Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum. Russian Journal of Plant Physiology, 53, 671–677.
Dowd P F, Johnson E T. 2018. Overexpression of a maize (Zea mays) defensin-like gene in maize callus enhances resistance to both insects and fungi. Agri Gene, 9, 16–23.
Drira M, Elleuch J, Hlima H B, Hentati F, Gardarin C, Rihouey C, Cerf D L, Michaud P, Abdelkafi S, Fendri I. 2021. Optimization of exopolysaccharides production by Porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporum. Biomolecules, 11, 1–18.
Emamifar S, Abolmaali S, Mohsen S S, Mohammadi M, Shahmohammadi M. 2021. Molecular characterization and evaluation of the antibacterial activity of a plant defensin peptide derived from a gene of oat (Avena sativa L.). Phytochemistry ,181, 112586.
FAO (Food and Agriculture Organization). 2021. Online statistical database: Food balance. FAOSTAT (Food and Agriculture Organization of the United Nations). [2021-10-9]. https://www.fao.org/faostat/zh/#data/QCL
Fant F, Vranken W F, Borremans F A M. 1999. The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance. Proteins: Structure, Function and Genetics, 37, 388–403.
Fernández-Cancelo P, Teixidó N, Echeverría G, Torres R, Larrigaudière C, Giné-Bordonaba J. 2021. Dissecting the influence of the orchard location and the maturity at harvest on apple quality, physiology and susceptibility to major postharvest pathogens. Scientia Horticulturae, 285, 110159.
Ferreira R B, Monteiro S, Freitas R, Santos C N, Chen Z, Batista L M, Duarte J, Borges A, Teixeira A R. 2007. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8, 677–700.
Gao A G, Hakimi S M, Mittanck C A, Wu Y, Woerner B M, Stark D M, Shah D M, Liang J, Rommens C M T. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310.
Gbala I D, Macharia R W, Bargul J L, Magoma G. 2022. Membrane permeabilization and antimicrobial activity of recombinant defensin-d2 and actifensin against multidrug-resistant Pseudomonas aeruginosa and Candida albicans. Molecules, 27, 4325.
Grunewaldt-Stöcker G, Mahnkopp F, Popp C, Maiss E, Winkelmann T. 2019. Diagnosis of apple replant disease (ARD): Microscopic evidence of early symptoms in fine roots of different apple rootstock genotypes. Scientia Horticulturae, 243, 583–594.
Guillén-Chable F, Arenas-Sosa I, Islas-Flores I, Corzo G, Martinez-Liu C, Estrada G. 2017. Antibacterial activity and phospholipid recognition of the recombinant defensin J1-1 from Capsicum genus. Protein Expression and Purification, 136, 45–51.
Hanks J N, Snyder A K, Graham M A, Shah R K, Blaylock L A, Harrison M J, Shah D M. 2005. Defensin gene family in Medicago truncatula: Structure, expression and induction by signal molecules. Plant Molecular Biology, 58, 385–399.
Hannan Parker A, Wilkinson S W, Ton J. 2022. Epigenetics: A catalyst of plant immunity against pathogens. New Phytology, 233, 66–83.
Hyo S, Sangkyu P, Soomin P, Byung O, Kyoungwhan B, Oksoo H, Jeong K, Young S K. 2014. Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One, 9, e97936.
Jain M, Amera G M, Muthukumaran J, Singh A K. 2022. Insights into biological role of plant defense proteins: A review. Biocatalysis and Agricultural Biotechnology, 40, 102293.
Jenssen H, Hamill P, Hancock R E W. 2006. Peptide antimicrobial agents. Clinical Microbiology Reviews, 19, 491–511.
Jha S, Chattoo B B. 2010. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Research, 19, 373–384.
Kaur J, Fellers J, Adholeya A, Velivelli S L S, El-Mounadi K, Nersesian N, Clemente T, Shah D. 2017. Expression of apoplast-targeted plant defensin MtDef4.2 confers resistance to leaf rust pathogen Puccinia triticina but does not affect mycorrhizal symbiosis in transgenic wheat. Transgenic Research, 26, 37–49.
Koike M, Okamoto T, Tsuda S, Imai R. 2002. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochemical and Biophysical Research Communications, 298, 46–53.
Li J, Hu S, Jian W, Xie C, Yang X. 2021. Plant antimicrobial peptides: Structures, functions, and applications. Botanical Studies, 62, 1–15.
Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu H, Xin Z. 2011. Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Functional & Integrative Genomics, 11, 63–70.
Lin T, Li L, Gu X, Owusu A M, Li S Y, Han S, Cao G, Zhu T, Li S J. 2023. Seasonal variations in the composition and diversity of rhizosphere soil microbiome of bamboo plants as infected by soil-borne pathogen and screening of associated antagonistic strains. Industrial Crops and Products, 197, 116641.
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. 2023. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiology, 57, 1–15.
Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, Cao H, Li H, Fu Y. 2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnology Journal, 17, 1804–1813.
Mendez E, Moreno A, Colilla F, Pelaez F, Limas G G, Mendez R, Soriano F, Salinas M, Haro C. 1990. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. European Journal of Biochemistry, 194, 533–539.
Nanjareddy K, Arthikala M K, Blanco L, Arellano E S, Lara M. 2016. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: Tools for rapid gene expression analysis. BMC Biotechnology, 16, 1–14.
Parisi K, Shafee T M A, Quimbar P, Weerden N L, Bleackley M R, Anderson M A. 2019. The evolution, function and mechanisms of action for plant defensins. Seminars in Cell & Developmental Biology, 88, 107–118.
Pelegrini P B, Franco O L. 2005. Plant γ-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins. International Journal of Biochemistry & Cell Biology, 37, 2239–2253.
Proietti S, Caarls L, Coolen S, Van Pelt J A, Van Wees S C M, Pieterse C M J. 2018. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant Cell and Environment, 41, 2342–2356.
Rao X, Huang X, Zhou Z, Lin X. 2013. An improvement of the 2–∆∆CT method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics, 3, 71–85.
Ribeiro V C, Leitão C A E. 2020. Utilisation of Toluidine blue O pH 4.0 and histochemical inferences in plant sections obtained by free-hand. Protoplasma, 257, 993–1008.
Sadhu S K, Jogam P, Gande K, Marapaka V, Penna S, Peddaboina V. 2023. Expression of radish defensin (RsAFP2) gene in chickpea (Cicer arietinum L.) confers resistance to Fusarium wilt disease. Molecular Biology Reports, 50, 11–18.
Sánchez E E, Giayetto A, Cichón L, Fernández D, Aruani M C, Curetti M. 2007. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant and Soil, 292, 193–203.
Sathoff A E, Samac D A. 2019. Antibacterial activity of plant defensins. Molecular Plant–Microbe Interactions, 32, 507–514.
Shahmiri M, Bleackley M R, Dawson C S, Weerden N L, Anderson M A, Mechler A. 2023. Membrane binding properties of plant defensins. Phytochemistry, 209, 113618.
Souza C E, Pinto M F S, Pelegrini P B, Lima T B, Silva O N, Pogue R, Grossi M F, Franco O L. 2011. Plant storage proteins with antimicrobial activity: Novel insights into plant defense mechanisms. FASEB Journal, 25, 3290–3305.
Stotz H U, Thomson J G, Wang Y. 2009. Plant defensins: Defense, development and application. Plant Signaling & Behavior, 4, 1010–1012.
Tam J P, Wang S, Wong K H, Tan W L. 2015. Antimicrobial peptides from plants. Pharmaceuticals, 8, 711–757.
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal R A, Goremykin V, et al. 2010. The genome of the domesticated apple (Malus×domestica Borkh.). Nature Genetics, 42, 833–839.
Velivelli S L S, Islam K T, Hobson E, Shah D M. 2018. Modes of action of a Bi-domain plant defensin MtDef5 against a bacterial pathogen Xanthomonas campestris. Frontiers in Microbiology, 9, 1–9.
Vi T, Nguyen T N L, Pham T T N, Nguyen H Q, Nguyen T H Y, Tu Q T, Le V S, Chu H M. 2019. Overexpression of the ZmDEF1 gene increases the resistance to weevil larvae in transgenic maize seeds. Molecular Biology Reports, 46, 2177–2185.
Wang N, Jiang S, Zhang Z, Fang H, Xu H, Wang Y, Chen X. 2018. Malus sieversii: The origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Horticulture Research, 5, 70.
Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Journal, 90, 276–292.
Wang X. 2012. Cloning and functional analysis of developmental characteristics and differentially expressed genes in the peel of Huanghua pear and its green bud transformation. Ph D thesis, Nanjing Agricultural University, China. (in Chinese)
Wani S H, Anand S, Singh B, Bohra A, Joshi R. 2021. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. Plant Cell Reports, 40, 1071–1085.
Yamauchi T, Watanabe K, Fukazawa A, Mori H, Abe F, Kawaguchi K, Oyanagi A, Nakazono M. 2014. Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions. Journal of Experimental Botany, 65, 261–273.
Yan K, Han G, Ren C, Zhao S, Wu X, Bian T. 2018. Fusarium solani infection depressed photosystem performance by inducing foliage wilting in apple seedlings. Frontiers in Plant Science, 9, 1–10.
Ye J, Zhang L, Zhang X, Wu X, Fang R. 2021. Plant defense networks against insect-borne pathogens. Trends in Plant Science, 26, 272–287.
Zarinpanjeh N, Motallebi M, Zamani M R, Ziaei M. 2016. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes. Journal of Applied Genetics, 57, 417–425.
Zehra A, Meena M, Dubey M K, Aamir M, Upadhyay R S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Revista Brasileira de Botanica, 40, 651–664.
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. 2017. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnology Journal, 15, 39–55.
Zhang J, Xu H, Wang N, Jiang S, Fang H, Zhang Z, Yang G, Wang Y, Su M, Xu L, Chen X. 2018. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology, 98, 205–218.
|