Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (4): 1188-1202    DOI: 10.1016/S2095-3119(21)63633-X
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
The rhizospheric microbiome becomes more diverse with maize domestication and genetic improvement
HUANG Jun1, LI Yun-feng1, MA Yuan-ying2, LI Yan-sheng3, JIN Jian3, 4, LIAN Teng-xiang1
1 Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510640, P.R.China
2 Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane Qld 4072, Australia 
3 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R.China
4 Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora Vic 3086, Australia

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米在驯化和遗传改良过程中改变了形态及生理特性从而提高了产量和对胁迫的抗性,在这一过程中根际微生物的多样性可能也随之发生变化。了解玉米种质资源的进化如何影响其生长期的根际细菌结构,对于揭示植物-微生物之间的协同关系,进而提高驯化种质的产量具有重要意义。本研究在田间展开,选择9个具有代表性的驯化和遗传改良种质材料,分别在幼苗期、盛花期和成熟期对大雏草、地方种和自交系植物DNA和根际细菌DNA进行测序。检测并分析不同处理下土壤化学性质与细菌群落结构变化的关系。结果表明,玉米的驯化和遗传改良增加了根际细菌的多样性,改变了根际细菌的群落组成。根际中的核心微生物组在不同种质之间存在显著差异。共现网络分析表明,自交系的细菌网络模块性高于大雏草和地方品种。本研究最终表明:随着玉米的驯化和遗传改良,根际群落多样性随之增加,从而可以增强玉米对生物胁迫适应能力,提高对土壤养分的利用效率。




Abstract  Domestication and genetic improvement of maize improve yield and stress tolerance due to changes in morphological and physiological properties, which likely alter rhizosphere microbial diversity.  Understanding how the evolution of maize germplasm impacts its rhizobacterial traits during the growth stage is important for optimizing plant-microbe associations and obtaining yield gain in domesticated germplasms.  In this study, a total of nine accessions representing domestication and subsequent genetic improvement were selected.  We then sequenced the plant DNA and rhizobacterial DNA of teosinte, landraces and inbred lines at the seedling, flowering and maturity stages in a field trial.  Moreover, the soil chemical properties were determined at the respective stages to explore the associations of soil characteristics with bacterial community structures.  The results showed that domestication and genetic improvement increased the rhizobacterial diversity and substantially altered the rhizobacterial community composition.  The core microbiome in the rhizosphere differed among germplasm groups.  The co-occurrence network analysis demonstrated that the modularity in the bacterial network of the inbred lines was greater than those of teosinte and the landraces.  In conclusion, the increased diversity of the rhizobacterial community with domestication and genetic improvement may improve maize resilience to biotic stresses and soil nutrient availability to plants. 
Keywords:  teosinte       landraces        inbred lines        domestication and improvement        core microbiome        network  
Received: 30 October 2020   Accepted: 21 January 2021
Fund: This work was supported by the Key Area Research and Development Program of Guangdong Province, China (2018B020202013), the National Key R&D Program of China (2018YFD1000903) and the Natural Science Foundation of Guangdong Province, China (2018A030313865).
About author:  HUANG Jun, E-mail: junhuang@scau.edu.cn; Correspondence LIAN Teng-xiang, Tel/Fax: +86-20-85288024, E-mail: liantx@scau.edu.cn; JIN Jian, E-mail: jinjian29@hotmail.com

Cite this article: 

HUANG Jun, LI Yun-feng, MA Yuan-ying, LI Yan-sheng, JIN Jian, LIAN Teng-xiang. 2022. The rhizospheric microbiome becomes more diverse with maize domestication and genetic improvement. Journal of Integrative Agriculture, 21(4): 1188-1202.

Agler M T, Ruhe J, Kroll S, Morhenn C, Kim S T, Weigel D, Kemen E M. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14, e1002352. 
Albuquerque L, França L, Rainey F A, Schumann P, Nobre M F, da Costa M S. 2011. Gaiellaocculta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Systematic and Applied Microbiology, 34, 595–599. 
Aymé S, Roucou A, Mounier A, Bru D, Breuil M, Fort F, Vile D, Roumet P, Phillippot L, Violle C. 2020. Domestication-driven changes in plant traits associated with changes in the assembly of the rhizosphere microbiota in tetraploid wheat. Scientific Reports, 10, 12234.
Badri D V, Chaparro J M, Zhang R, Shen Q, Vivanco J M. 2013. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry, 288, 4502–4512. 
Baudoin E, Benizri E, Guckert A. 2003. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry, 35, 183–192. 
Berry D, Widder S. 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology, 5, 219. 
Bulgarelli D, Garrido-Oter R, Münch P C, Weiman A, Dröge J, Pan Y, McHardy A C, Schulze-Lefert P. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host & Microbe, 17, 392–403.
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat E V L, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838. 
Canbolat M Y, Bilen S, Cakmakcı R, Sahin F, Aydın A. 2006. Effect of plant growth promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils, 42, 350–357. 
Chagas F O, Pessotti R C, Caraballo-Rodríguez A M, Pupo M T. 2018. Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 47, 1652–1704. 
Chaparro J M, Badri D V, Vivanco J M. 2014. Rhizosphere microbiome assemblage is affected by plant development. The ISME Journal, 8, 790–803. 
Chong J, Liu P, Zhou G, Xia J. 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols, 5, 799–821. 
Cole J R, Wang Q, Cardenas E, Fish J, Chai B, Farris R J, Kulam-Syed-Mohideen A S, McGarrell D M, Marsh T, Garrity G M, Tiedje J M. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, 37, 141–145.
Van Deynze A, Zamora P, Delaux P M, Heitmann C, Jayaraman D, Rajasekar S, Graham D, Maeda J, Gibson D, Schwartz K D, Berry A M, Bhatnagar S, Jospin G, Darling A, Jeannotte R, Lopez J, Weimer B C, Eisen J A, Shapiro H Y, Ané J M, Bennett A B. 2018. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 16, e2006352. 
Dodds P N, Rathjen J P. 2010. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nature Review Genetics, 11, 539–548. 
Doebley J F. 2004. The genetics of maize evolution. Annual Review of Genetics, 38, 37–59. 
Doebley J F, Gaut B S, Smith B D. 2006. The molecular genetics of crop domestication. Cell, 127, 1309–1321. 
Duvick D N. 1977. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica, 22, 187–196.
Duvick D N, Smith J S C, Cooper M. 2004. Long-term selection in a commercial hybrid maize breeding program. In: Janick J, ed., Plant Breeding Reviews: Long-Term Selection: Crops, Animals, and Bacteria. John Wiley & Sons, New York. pp. 109–151. 
Earl D A, Vonholdt B M. 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361. 
Edgar R, Haas B, Clemente J, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14, 2611–2620.
Fan K, Weisenhorn P, Gilbert J A, Shi Y, Bai Y, Chu H. 2018. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biology and Biochemistry, 121, 185–192. 
Farrar K, Bryant D, Cope-Selby N. 2014. Understanding and engineering beneficial plant–microbe interactions: Plant growth promotion in energy crops. Plant Biotechnology Journal, 12, 1193–1206. 
Friendly M, Meyer D. 2015. Discrete data analysis with R: visualization and modeling techniques for categorical and count data. CRC Press, Boca Raton. pp. 63–108. 
Garcia-Palacios P, Maestre F T, Bardgett R D, De Kroon H. 2012. Plant responses to soil heterogeneity and global environmental change. Journal of Ecology, 100, 1303–1314.
Gepts P. 2004. Crop domestication as a long-term selection experiment. Plant Breeding Review, 24, 1–44. 
de Gonzalo G, Colpa D I, Habib M H, Fraaije M W. 2016. Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236, 110–119.
Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J N, Xu Y B. 2019.  Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 39, 37. 
Hartman K, Heijden M G A V D, Wittwer R A, Banerjee S, Walser J, Schlaeppi K. 2018. Correction to: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome, 6, 14.
Hashimoto W, Murata K. 1998. α-L-rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Bioscience, Biotechnology, and Biochemistry, 62, 1068–1074. 
van Heerwaarden J J, Doebley W H, Brigg J C, Glaubitz M M, Goodman J, de Jesus Sanchez, Gonzalez J, Ross-Ibarra. 2011. Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proceedings of the National Academy of Sciences of the United States of America, 108, 1088–1092. 
Hou Q, Wang W X, Yang Y, Hu J, Bian C S, Jin L P, Li G C, Xiong X Y. 2020. Rhizosphere microbial diversity and community dynamics during potato cultivation. European Journal of Soil Biology, 98, 103176.
Houlden A, Timms-Wilson T M, Day M J, Bailey M J. 2008. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiology Ecology, 65, 193–201. 
Hu Q, Tan L, Gu S, Xiao Y, Xiong X, Zeng W A, Feng K, Wei Z, Deng Y. 2020. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. npj Biofilms Microbiology, 6, 1–8. 
Jakobsson M, Rosenberg N A. 2007. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806. 
Jiang Y, Li S, Li R, Jia Z, Liu Y, Lv L, Zhu H, Wu W, Li W. 2017. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology and Biochemistry, 109, 145–155. 
Johnston-Monje D, Raizada M N. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE, 6, e20396.
Jones D L, Willett V B. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 38, 991–999.
Kolton M, Harel Y M, Pasternak Z, Graber E R, Elad Y, Cytryn E. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology, 77, 4924–4930. 
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874. 
Lakshmanan V, Kitto S L, Caplan J L, Hsueh Y H, Kearns D B, Bais W H P. 2012.  Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology, 160, 1642–1661. 
Lebeis S L, Paredes S H, Lundberg D S, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones C D, Tringe S G, Dang J L. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349, 860–864. 
Leff J W, Lynch R C, Kane N C, Fierer N. 2017. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytologist, 214, 412–423. 
Letunic I, Bork P. 2019. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47, 256–259. 
Li X, Rui J, Mao Y. 2014a. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology and Biochemistry, 68, 392–401. 
Li X, Rui J, Xiong J, Li J. 2014b. Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE, 9, e112609. 
Liu F, Hewezi T, Lebeis S L, Pantalone V, Grewal P S, Staton M E. 2019. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, 19, 201.
Lian T X, Mu Y H, Jin J, Ma Q B, Cheng Y B, Cai Z D, Nian H. 2019. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ, 7, e6412.
Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes P C, Xu J, Gilbert J A. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal, 10, 1891–1901. 
Matsuoka Y, Vigouroux Y, Goodman M M, Sanchez G J, Bucklerm E, Doebley J. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 99, 6080–6084. 
Mendes L W, Mendes R, Raaijmakers J M, Tsai S M. 2018. Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean. The ISME Journal, 12, 3038–3042. 
Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider J H M, Piceno Y, DeSantis T Z, Andersen G L, Bakker P A H M, Raaijmakers J M. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100. 
Micallef S A, Channer S, Shiaris M P, Colon-Carmona A. 2009. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signaling and Behavior, 4, 777–780. 
Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P. 2006. Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytologist, 170, 165–175. 
Ofek M, Voronov-Goldman M, Hadar Y, Minz D. 2014. Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16, 2157–2167.
Oteino N, Lally R D, Kiwanuka S, Lloyd A, Ryan D, Germaine  K J, Dowling D N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745. 
Parks D H, Beiko R G. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics, 26, 715–721.
Pérez-Jaramillo J E, Carrión V J, Bosse M, Ferrão L F V, de Hollander M, Garcia A A F, Ramírez C A, Mendes R, Raaijmakers J M. 2017. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, 11, 2244–2257. 
Pérez-Jaramillo J E, de Hollander M, Ramírez C A, Mendes R, Raaijmakers J M, Carrión V J. 2019. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 7, 114. 
Pérez-Jaramillo J E, Mendes R, Raaijmakers J M. 2016. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, 90, 635–644.
Piperno D R, Ranere A J, Hols I, Iriarte J, Dickau R. 2009. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, 106, 5019–5024.
Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.
Purugganan M D, Fuller D Q. 2009. The nature of selection during plant domestication. Nature, 457, 843–848. 
Rodriguez R J, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y O, Redman R S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404–416. 
Saavedra S, Stoufferm D B, Uzzi B, Bascompte J. 2011. Strong contributors to network persistence are the most vulnerable to extinction. Nature, 478, 233–235.
Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81, 8014–8018.
Schatz A, Bugie E, Waksman S A. 2005. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Experimental Biology and Medicine, 55, 66–69. 
Shenton M, Iwamoto C, Kurata N, Ikeo K. 2016. Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition. Rice, 9, 42. 
Sun R, Zhang X X, Guo X, Wang D Z, Chu H Y. 2015. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9–18. 
Szoboszlay M, Lambers J, Chappell J, Kupper J V, Moe L A, McNear D H. 2015. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biology and Biochemistry, 80, 34–44. 
Tian L, Shi S H, Sun Y, Tran L S P, Tian C J. 2020. The compositions of rhizosphere microbiomes of wild and cultivated soybeans changed following the hybridization of their F1 and F2 generations. European Journal of Soil Biology, 101, 103249.
Turner T R, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole P S. 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. The ISME Journal, 7, 2248–2258. 
Wang C, Bai Y. 2019. Maize aerial roots fix atmospheric N2 by interacting with nitrogen fixing bacteria. Scientia Sinica, 49, 89–90. (in Chinese)
Xu G H, Cao J J, Wang X F, Chen Q Y, Jin W W, Li Z, Tian F. 2019. Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. The Plant Cell, 31, 1990–2009. 
Xu Y, Wang G, Jin J, Liu J, Zhang Q, Liu X. 2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biology and Biochemistry, 41, 919–925.
Yamasaki M, Tenaillon M I, Bi I V, Schroeder S G, Sanchez-Villeda H, Doebley J, Gaut B S, McMullen M D. 2005. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. The Plant Cell, 17, 2859–2872. 
Zachow C, Müller H, Tilcher R, Berg G. 2014. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima - ancestor of all beet crops - and modern sugar beets. Frontiers in Microbiology, 5, 415. 
Zaidi A, Khan M S, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284. 
Zhang J, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y. 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 37, 676–684. 
Zhang J, Zhang J Y, Zhang N, Liu Y X, Zhang X N, Hu B, Qin Y, Xu H R, Wang H, Guo X X, Qian J M, Wang W, Zhang P F, Jin T, Chu C C, Bai Y. 2018. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China (Life Sciences), 61, 613–621.
No related articles found!
No Suggested Reading articles found!