Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 31-40    DOI: 10.1016/j.jia.2022.08.101
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin
CHEN Hong-yan*, ZHU Zhu*, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun
Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  水稻叶片表皮毛是由表皮细胞分化发育形成,表皮毛在植物的抗逆以及防止紫外直射等过程中都具有重要的作用,但关于水稻毛状体发育的研究还存在很大未知。在本研究中,我们对野生型籼系水稻西大1B进行EMS (ethylmethane sulfonate) 诱导,通过表型观察分析筛选出了毛状体发育缺陷突变体,将其命名为lhl1 (Less Hairy Leaf 1)。我们对其进行了基因定位和图位克隆,将其定位在2号染色体两个分子标记的70 kb的区间内,通过基因测序将LOC_Os02g25230确定为候选基因。之后我们构建了干涉以及超表达株系,扫描电镜观察分析发现LHL1-RNAi叶片同lhl1一样存在毛状体发育缺陷,但LHL1-OE株系叶片表面的毛状体形态与野生型相似,但数目大大增加。qRT-PCR分析发现,与野生型相比,突变体lhl1中正向调控毛状体发育相关的基因表达下调。对生长素相关基因定量分析发现,突变体hl7中生长素相关基因的表达严重下调,进一步通过激素响应分析发现HL7的表达受到生长素的诱导,证明了HL7影响水稻叶片毛状体的发育可能与生长素途径有关。

Abstract  The trichomes of rice leaves are formed by the differentiation and development of epidermal cells.  Plant trichomes play an important role in stress resistance and protection against direct ultraviolet irradiation.  However, the development of rice trichomes remains poorly understood.  In this study, we conducted ethylmethane sulfonate (EMS)-mediated mutagenesis on the wild-type (WT) indica rice ‘Xida 1B’.  Phenotypic analysis led to the screening of a mutant that is defective in trichome development, designated lhl1 (less hairy leaf 1).  We performed map-based cloning and localized the mutated gene to the 70-kb interval between the molecular markers V-9 and V-10 on chromosome 2.  The locus LOC_Os02g25230 was identified as the candidate gene by sequencing.  We constructed RNA interference (LHL1-RNAi) and overexpression lines (LHL1-OE) to verity the candidate gene.  The leaves of the LHL1-RNAi lines showed the same trichome developmental defects as the lhl1 mutant, whereas the trichome morphology on the leaf surface of the LHL1-OE lines was similar to that of the WT, although the number of trichomes was significantly higher.  Quantitative real-time PCR (RT-qPCR) analysis revealed that the expression levels of auxin-related genes and positive regulators of trichome development in the lhl1 mutant were down-regulated compared with the WT.  Hormone response analysis revealed that LHL1 expression was affected by auxin.  The results indicate that the influence of LHL1 on trichome development in rice leaves may be associated with an auxin pathway.
Keywords:  rice        trichome        gene cloning        auxin  
Received: 29 July 2020   Accepted: 28 September 2021
Fund: This work was supported by grants from the Natural Science Foundation of Chongqing, China (cstc2020jcyj-msxm0539, cstc2015jcyjA80008), the National College Students Innovation and Entrepreneurship Training Program from the Ministry of Education, China (202110635082), and the National Natural Science Foundation of China (32171964, 31171178).
About author:  CHEN Hong-yan, E-mail: 18238683257@163.com;

Cite this article: 

CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun. 2023. Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin. Journal of Integrative Agriculture, 22(1): 31-40.

Chien J C, Sussex I M. 1996. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiology, 111, 1321–1328.
Deng W, Yang Y W, Ren Z X, Audran-Delalande C, Mila I, Wang X Y, Song H L, Hu Y H, Bouzayen M, Li Z G. 2012. The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytologist, 194, 379–390.
Ding Y, Wang X, Su L, Zhai J X, Cao S Y, Zhang D F, Liu C Y, Bi Y P, Qian Q, Cheng Z K, Chu C C, Cao X F. 2007. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. The Plant Cell, 19, 9–22.
Dongchen W H, Zhang X L, Zhu Q, Xiong H B, Wei Z F, Lv Y G, Zhang L D, Wu T F, Wei L, Wu C, Chen L J, Lee D S. 2015. Cloning and subcellular localization of a new glabrous-leaf mutant gene GLL in rice (Oryza sativa L.). Molecular Plant Breeding, 38, 1012–1019.
Gan Y B, Kumimoto R, Liu C, Ratcliffe O, Yu H, Broun P. 2006. GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins of epidermal differentiation and shoot maturation in Arabidopsis. The Plant Cell, 18, 1383–1395.
Hou M M, Luo F F, Wu D X, Zhang X H, Lou M M, Shen D F, Yan M, Mao C Z, Fan X R, Xu G H, Zhang Y L. 2021. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. New Phytologist, 229, 935–949.
Hua B, Chang J, Xu Z J, Han X Q, Xu M Y, Yang M N, Yang C X, Ye Z B, Wu S. 2021. HOMEODOMAIN PROTEIN8 mediates jasmonate-triggered trichome elongation in tomato. New Phytologist, 230, 1063–1077.
Huang J, Li Z Y, Zhao D Z. 2016. Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Scientific Reports, 6, 1–14.
Kang J H, Shi F, Jones A D, Marks M D, Howe G A. 2010. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany, 61, 1053–1064.
Lan T, Zheng Y L, Su Z L, Yu S B, Song H B, Zheng X Y, Lin G G, Wu W R. 2019. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). Genes, Genomes, Genetics, 9, 4107–4114.
Levin H L. 1996. An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Molecular & Cellular Biology, 16, 5645–5654. 
Li F, Yan D, Gao L F, Liu P, Zhao G Y, Jia J Z , Ren Z L. 2020. TaIAA15s genes regulated plant architecture in wheat. Journal of Integrative Agriculture, 19, 2–11.
Li H, Sun H Y, Jiang J H, Sun X Y, Tan L B, Sun C Q. 2021. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnology Journal, 19, 64–73. 
Li J J, Tang B, Li Y X, Li C G, Guo M, Chen H Y, Han S C, Li J, Lou Q J, Sun W Q, Wang P, Guo H F, Ye W, Zhang Z Y, Zhang H L, Yu S B, Zhang L, Li Z C. 2021. Rice SPL10 positively regulates trichome development through expression of HL6 and auxin-related genes. Journal of Integrative Plant Biology, 63, 1521–1537.
Li J J, Yuan Y D, Lu Z F, Yang L S, Gao R C, Lu J G, Li J Y, Xiong G S. 2012. Glabrous Rice 1, encoding a homeodomain protein, regulates trichome development in rice. Rice, 5, 1–10.
Li W Q, Wu J G, Weng S L, Zhang D P, Zhang Y J, Shi C H. 2010. Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L.). Plant Cell Reports, 29, 617–627.
Liu H, Liu S B, Jiao J J, Lu T J, Xu F. 2017. Trichomes as a natural biophysical barrier for plants and their bioinspired applications. Soft Matter, 13, 5096–5106.
Liu J Q, Chen K, Zhang Z Z, Chen X L, Wang A X. 2016. Effects of exogenous GA, MeJA, IAA, SA and KT on trichome formation in tomato. Acta Horticulturae Sinica, 43, 2151–2060. (in Chinese)
Liu L, Sun J, Wu D X, Shu X L. 2015. Advances in studying on glabrous rice and the development of trichomes. Journal of Nuclear Agricultural Sciences, 29, 2110–2116. (in Chinese)
Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. 2015. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 112, 11102–11107.
Majorek K A, Stanislaw D H, Kamil S, Anna M, Marcin N, Krzysztof G, Bujnicki J M. 2014. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Research, 42, 4160–4179.
Matías-Hernández L, Aguilar-Jaramillo A E, Osnato M, Weinstain R, Shani E, Suárez-López P, Pelaz S. 2016. TEMPRANILLO reveals the mesophyll as crucial for epidermal trichome formation. Plant Physiology, 170, 1624–1639.
Mozaffari-Jovin S, Santos K F, Hsiao H H, Will C L, Urlaub H, Wahl M C, Luhrmann R. 2012. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes & Development, 26, 2422–2434.
Niu E L, Cai C P, Bao J H, Shuang W U, Zhao L, Guo W Z. 2019. Up-regulation of a homeodomain-leucine zipper gene HD-1 contributes to trichome initiation and development in cotton. Journal of Integrative Agriculture, 18, 361–371.
Okagaki R J, Haaning A, Bilgic H, Heinen S, Druka A, Bayer M, Waugh R, Muehlbauer G J. 2018. ELIGULUM-A regulates lateral branch and leaf development in barley. Plant Physiology, 176, 2750–2760.
Pattanaik S, Patra B, Singh S K, Yuan L. 2014. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Frontiers in Plant Science, 5, 259.
Qi T C, Huang H, Wu D W, Yan J B, Qi Y J, Song S S, Xie D X. 2014. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. The Plant Cell, 26, 1118–1133.
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R. 2005. InterProScan: Protein domains identifier. Nucleic Acids Research, 33, 116–120.
Serna L, Martin C. 2006. Trichomes: Different regulatory networks lead to convergent structures. Trends in Plant Science, 11, 274–280.
Sun W Q, Gao D W, Xiong Y, Tang X X, Xiao X F, Wang C R, Yu S B. 2017. Hairy leaf 6, an AP2/ERF transcription factor, interacts with OsWOX3B and regulates trichome formation in rice. Molecular Plant, 10, 1417–1433.
Traw M B, Bergelson J. 2003. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiology, 133, 1367–1375.
Wang Y P, Chen W L, Qin P, Huang Y Y, Ma B T, Ouyang X H, Chen X W, Li S G. 2013. Characterization and fine mapping of GLABROUS RICE 2 in rice. Journal of Genetics & Genomics, 40, 579–582.
Xie Y J, Yu X Z, Jiang S F, Xiao K Z, Wang Y P, Li L L, Wang F X, He W, Cai Q H, Xie H A. 2020. OsGL6, a conserved AP2 domain protein, promotes leaf trichome initiation in rice. Biochemical and Biophysical Research Communications, 522, 448–455.
Yang C X, Ye Z B. 2013. Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences, 70, 1937–1948.
Zeng Y H, Zhu Y S, Lian L, Xie H G, Zhang J F, Xie H A. 2013. Genetic analysis and fine mapping of the pubescence gene GL6 in rice (Oryza sativa L.). Chinese Science Bulletin, 58, 2992–2999.
Zhang H L, Wu K, Wang Y F, Peng Y, Hu F, Wen L, Han B, Qian Q, Teng S. 2012. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. Rice, 5, 1–10.
Zhang J W, Zhao J C, Zhou Q, Chen G X. 2018. Progress in research of plant trichome. Chinese Bulletin of Botany, 53, 726–737.
Zhang S Y, Zhu L M, Shen C B, Ji Z, Zhang H P, Zhang T, Li Y, Yu J P, Yang N, He Y B, Tian Y N, Wu K, Wu J Y, Harberd N P, Zhao Y D, Fu X D, Wang S K, Li S. 2021. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. The Plant Cell, 33, 566–580.
Zhang X L, Yan F, Tang Y W, Yuan Y J, Deng W, Li Z G. 2015. Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes. Plant and Cell Physiology, 56, 2110–2124.
Zhang Y Q, Shen J J, Bartholomew E S, Dong M M, Chen S Y, Yin S, Zhai X L, Feng Z X, Ren H Z, Liu X W. 2021. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. The Plant Journal, 106, 753–765.
[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[5] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[6] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[7] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[8] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[9] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[10] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[11] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[12] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[13] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
[14] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[15] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
No Suggested Reading articles found!