Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2000-2014    DOI: 10.1016/j.jia.2022.10.007
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.

WANG Xue-feng1*, SHAO Dong-nan1*, LIANG Qian1, FENG Xiao-kang1, ZHU Qian-hao2, YANG Yong-lin3, LIU Feng1, ZHANG Xin-yu1, LI Yan-jun1, SUN Jie1#, XUE Fei1#

1 Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, P.R.China 

2 CSIRO Agriculture and Food, Canberra, ACT 2601, Australia

3 Cotton Research Institute, Shihezi Academy of Agriculture Sciences, Shihezi 832000, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

株型和叶色是棉花纤维产量的重要影响因素。本研究基于遗传分析、茎秆石蜡切片和植物激素处理方法,发现棉花矮红突变体DR一个赤霉素敏感型突变体,由一个单显性基因位点突变引起,将其命名为GhDR。通过BSA-seq结合靶向测序基因型检测GBTS方法控制突变性状基因定位A09 染色体约197 kb候选区间包含 25 个注释基因。基于候选基因的注释信息及其在突变体和正常植株之间的序列和表达差异GH_A09G2280基因被认为是控制矮红突变体表型的最佳候选基因。在DR突变体GhDR/GH_A09G2280基因编码区发现一个2 bp缺失,导致GhDR基因产生移码突变,蛋白翻译提前终止GhDR是拟南芥AtBBX24的同源基因,编码B-box锌指蛋白。移码缺失导致GhDR C末端缺失核定位结构域和VP结构,并改变了其亚细胞定位结果比较转录组分析表明,在DR突变体中,参与赤霉素生物合成和信号转导的关键基因下调表达,而与赤霉素降解和花青素生物合成相关基因上调表达。研究初步揭示了GhDR基因同时调控棉花株型和花青素积累的潜在分子机制



Abstract  Plant architecture and leaf color are important factors influencing cotton fiber yield. In this study, based on genetic analysis, stem paraffin sectioning, and phytohormone treatments, we showed that the dwarf-red (DR) cotton mutant is a gibberellin-sensitive mutant caused by a mutation in a single dominant locus, designated GhDR. Using bulked segregant analysis (BSA) and genotyping by target sequencing (GBTS) approaches, we located the causative mutation to a ~197-kb genetic interval on chromosome A09 containing 25 annotated genes. Based on gene annotation and expression changes between the mutant and normal plants, GH_A09G2280 was considered to be the best candidate gene responsible for the dwarf and red mutant phenotypes. A 2-nucleotide deletion was found in the coding region of GhDR/GH_A09G2280 in the DR mutant, which caused a frameshift and truncation of GhDR. GhDR is a homolog of Arabidopsis AtBBX24, and encodes a B-box zinc finger protein. The frameshift deletion eliminated the C-terminal nuclear localization domain and the VP domain of GhDR, and altered its subcellular localization. A comparative transcriptome analysis demonstrated downregulation of the key genes involved in gibberellin biosynthesis and the signaling transduction network, as well as upregulation of the genes related to gibberellin degradation and the anthocyanin biosynthetic pathway in the DR mutant. The results of this study revealed the potential molecular basis by which plant architecture and anthocyanin accumulation are regulated in cotton.  

Keywords:  cotton       BBX        dwarf        anthocyanin        gibberellin  
Received: 04 July 2022   Accepted: 25 August 2022
Fund: This work was supported by the National Natural Science Foundation of China (32160477 and 31960412), the International S&T Cooperation Projects of BINGTUAN, China (2021BC001), and the Young and Middle-aged Leaders in Scientific and Technological Innovation Foundation of Shihezi, China (2021RC02 and 2020CB010).
About author:  #Correspondence XUE Fei, E-mail: xuefei@shzu.edu.cn; SUN Jie, E-mail: sunjie@shzu.edu.cn * These authors contributed equally to this study

Cite this article: 

WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei. 2023. A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.. Journal of Integrative Agriculture, 22(7): 2000-2014.

Abid M A, Wei Y, Meng Z, Wang Y, Ye Y, Wang Y, He H, Zhou Q, Li Y, Wang P, Li X, Yan L, Malik W, Guo S, Chu C, Zhang R, Liang C. 2022. Increasing floral visitation and hybrid seed production mediated by beauty mark in Gossypium hirsutumPlant Biotechnology Journal20, 1274–1284.

Alabadi D, Gil J, Blazquez M A, Garcia-Martinez J L. 2004. Gibberellins repress photomorphogenesis in darkness. Plant Physiology134, 1050–1057.

An J P, Wang X F, Espley R V, Lin-Wang K, Bi S Q, You C X, Hao Y J. 2020. An apple B-box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant and Cell Physiology61, 130–143.

Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. 2014. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta240, 1051–1062.

Barnes J S, Nguyen H P, Shen S, Schug K A. 2009. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry. Journal of Chromatography A1216, 4728–4735.

Bursch K, Niemann E T, Nelson D C, Johansson H. 2021. Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module. Plant Journal107, 1346–1362.

Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants6, 921–928.

Chatterjee M, Sharma P, Khurana J P. 2006. Cryptochrome 1

from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiology141, 61–74.

Crocco C D, Locascio A, Escudero C M, Alabadi D, Blazquez M A, Botto J F. 2015. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thalianaNature Communications6, 6202.

Daviere J M, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P. 2014. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Current Biology24, 1923–1928.

Deng T, Wu D, Duan C, Yan X, Du Y, Zou J, Guan Y. 2017. Spatial profiling of gibberellins in a single leaf based on microscale matrix solid-phase dispersion and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry. Analytical Chemistry89, 9537–9543.

Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz J M, Kircher S, Schafer E, Fu X, Fan L M, Deng X W. 2008. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature451, 475–479.

Gangappa S N, Botto J F. 2014. The BBX family of plant transcription factors. Trends in Plant Science19, 460–470.

Gangappa S N, Botto J F. 2016. The multifaceted roles of HY5 in plant growth and development. Molecular Plant9, 1353–1365.

Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y. 2019. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding39, 1–12.

Indorf M, Cordero J, Neuhaus G, Rodriguez-Franco M. 2007. Salt tolerance (STO), a stress-related protein, has a major role in light signalling. Plant Journal51, 563–574.

Ji G, Liang C, Cai Y, Pan Z, Meng Z, Li Y, Jia Y, Miao Y, Pei X, Gong W, Wang X, Gao Q, Peng Z, Wang L, Sun J, Geng X, Wang P, Chen B, Wang P, Zhu T, et al. 2021. A copy number variant at the HPDA-D12 locus confers compact plant architecture in cotton. New Phytologist229, 2091–2103.

Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. 2018. Two B-Box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains. Plant Physiology176, 2963–2976.

Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng X W. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell19, 731–749.

Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. 2021. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. Plant Cell and Environment44, 3015–3033.

Li L, Zhang C, Huang J, Liu Q, Wei H, Wang H, Liu G, Gu L, Yu S. 2021. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal19, 109–123.

Li Q F, Wang C, Jiang L, Li S, Sun S S, He J X. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling5, ra72.

Li X, Ouyang X, Zhang Z, He L, Wang Y, Li Y, Zhao J, Chen Z, Wang C, Ding L, Pei Y, Xiao Y. 2019. Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics294, 469–478.

Li Y, Xu P, Chen G, Wu J, Liu Z, Lian H. 2020. FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant and Cell Physiology61, 826–837.

Liang A, Zhao J, Li X, Yan F, Chen Z, Chen X, Wang Y, Li Y, Wang C, Xiao Y. 2020. Up-regulation of GhPAP1A results in moderate anthocyanin accumulation and pigmentation in sub-red cotton. Molecular Genetics and Genomics295, 1393–1400.

Liu K, Li Y, Chen X, Li L, Liu K, Zhao H, Wang Y, Han S. 2018. ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in ArabidopsisJournal of Experimental Botany69, 3933–3947.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods25, 402–408.

de Lucas M, Daviere J M, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz J M, Lorrain S, Fankhauser C, Blazquez M A, Titarenko E, Prat S. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature451, 480–484.

Luo D, Xiong C, Lin A, Zhang C, Sun W, Zhang J, Yang C, Lu Y, Li H, Ye Z, He P, Wang T. 2021. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. Horticulture Research8, 163.

Ma J, Pei W, Ma Q, Geng Y, Liu G, Liu J, Cui Y, Zhang X, Wu M, Li X, Li D, Zang X, Song J, Tang S, Zhang J, Yu S, Yu J. 2019. QTL analysis and candidate gene identification for plant height in cotton based on an interspecific backcross inbred line population of Gossypium hirsutum×Gossypium barbadenseTheoretical and Applied Genetics132, 2663–2676.

McMichael S C. 1942. Occurrence of the dwarf-red character in upland cotton. Journal of Agricultural Research64, 477–481.

Oh E, Zhu J Y, Bai M Y, Arenhart R A, Sun Y, Wang Z Y. 2014. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife3, e03031.

Ou C, Zhang X, Wang F, Zhang L, Zhang Y, Fang M, Wang J, Wang J, Jiang S, Zhang Z. 2020. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): A deletion in the PpBBX24 gene is associated with the red skin of pear. Horticulture Research7, 39.

Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. 2011. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiology157, 1820–1831.

He P, Zhang H Z, Zhang L, Jiang B, Xiao G H, Yu J N. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture21, 1563–1575.

Shao D, Zhu Q H, Liang Q, Wang X, Li Y, Sun Y, Zhang X, Liu F, Xue F, Sun J. 2022. Transcriptome analysis reveals differences in anthocyanin accumulation in cotton (Gossypium hirsutum L.) induced by red and blue light. Frontiers in Plant Science13, 788828.

Sharma P, Chatterjee M, Burman N, Khurana J P. 2014. Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. Plant Cell and Environment37, 961–977.

Shin D H, Choi M, Kim K, Bang G, Cho M, Choi S B, Choi G, Park Y I. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in ArabidopsisFEBS Letters587, 1543–1547.

Spielmeyer W, Ellis M H, Chandler P M. 2002. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America99, 9043–9048.

Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R. 2013. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant Journal74, 174–183.

Van De Velde K, Thomas S G, Heyse F, Kaspar R, Van Der Straeten D, Rohde A. 2021. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat green revolution alleles. Molecular Plant14, 679–687.

Wang Y, Zhang X, Zhao Y, Yang J, He Y, Li G, Ma W, Huang X, Su J. 2020. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’. Plant Physiology and Biochemistry154, 665–674.

Weller J L, Hecht V, Vander Schoor J K, Davidson S E, Ross J J. 2009. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell21, 800–813.

Wu H, Ren Z, Zheng L, Guo M, Yang J, Hou L, Qanmber G, Li F, Yang Z. 2021. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton. Crop Journal9, 1049–1059.

Xu D. 2020. COP1 and BBXs-HY5-mediated light signal transduction in plants. New Phytologist228, 1748–1753.

Xu D, Jiang Y, Li J, Holm M, Deng X W. 2018. The B-Box domain protein BBX21 promotes photomorphogenesis. Plant Physiology176, 2365–2375.

Yadukrishnan P, Job N, Johansson H, Datta S. 2018. Opposite roles of group IV BBX proteins: Exploring missing links between structural and functional diversity. Plant Signaling & Behavior13, e1462641.

Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist203, 437–448.

Zhao L, Di J, Guo Q, Zhao J, Zhou X, Chen X. 2017. The differentially expressed genes identification in dwarf mutant of Gossypium hirsutum by RNA-Seq approach. Agri Gene5, 37–44.

Zhao X, Heng Y, Wang X, Deng X W, Xu D. 2020. A positive feedback loop of BBX11-BBX21-HY5 promotes photomorphogenic development in ArabidopsisPlant Communications1, 100045.

Zhang J, Zhang Y, Xing J, Yu H, Zhang R, Chen Y, Zhang D, Yin P, Tian X, Wang Q, Duan L, Zhang M, Peters R, Li Z. 2020. Introducing selective agrochemical manipulation of gibberellin metabolism into a cereal crop. Nature Plants6, 67–72.

Zhang X, Rui Q Z, Li Y, Chen Y, Chen Y, Zhang X L, Chen D H, Song M Z. 2020. Architecture of stem and branch affects yield formation in short season cotton. Journal of Integrative Agriculture19, 680–689.

Zhou H, Yang M, Zhao L, Zhu Z, Liu F, Sun H, Sun C, Tan L. 2021. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. Journal of Experimental Botany72, 1212–1224.

Zou Z, Wang R, Wang R, Yang S, Yang Y. 2017. Genome-wide identification, phylogenetic analysis, and expression profiling of the BBX family genes in pear. Journal of Horticultural Science & Biotechnology93, 37–50.

[1] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[2] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[3] LIU Yan, WANG Wei-ping, ZHANG Lin, ZHU Long-fu, ZHANG Xian-long, HE Xin. The HD-Zip transcription factor GhHB12 represses plant height by regulating the auxin signaling in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2015-2024.
[4] LIU Zhen-yu, LI Yi-yang, Leila. I. M. TAMBEL, LIU Yu-ting, DAI Yu-yang, XU Ze, LENG Xin-hua, ZHANG Xiang, CHEN De-hua, CHEN Yuan. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1684-1694.
[5] TIAN Xiao-min, HAN Peng, WANG Jing, SHAO Pan-xia, AN Qiu-shuang, Nurimanguli AINI, YANG Qing-yong, YOU Chun-yuan, LIN Hai-rong, ZHU Long-fu, PAN Zhen-yuan, NIE Xin-hui. Association mapping of lignin response to Verticillium wilt through an eight-way MAGIC population in Upland cotton[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1324-1337.
[6] WANG Xin-xin, ZHANG Min, SHENG Jian-dong, FENG Gu, Thomas W. KUYPER. Breeding against mycorrhizal symbiosis: Modern cotton (Gossypium hirsutum L.) varieties perform more poorly than older varieties except at very high phosphorus supply levels[J]. >Journal of Integrative Agriculture, 2023, 22(3): 701-715.
[7] QI Hai-kun, DU Ming-wei, MENG Lu, XIE Liu-wei, A. Egrinya ENEJI, XU Dong-yong, TIAN Xiao-li, LI Zhao-hu. Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2577-2587.
[8] WANG Le, LIU Yang, WEN Ming, LI Ming-hua, DONG Zhi-qiang, CUI Jing, MA Fu-yu. Growth and yield responses to simulated hail damage in drip-irrigated cotton[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2241-2252.
[9] HE Peng, ZHANG Hui-zhi, ZHANG Li, JIANG Bin, XIAO Guang-hui, YU Jia-ning. The GhMAX2 gene regulates plant growth and fiber development in cotton[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1563-1575.
[10] FENG Lu, CHI Bao-jie, DONG He-zhong. Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China[J]. >Journal of Integrative Agriculture, 2022, 21(3): 597-609.
[11] Kashif NOOR, Hafiza Masooma Naseer CHEEMA, Asif Ali KHAN, Rao Sohail Ahmad KHAN. Expression profiling of transgenes (Cry1Ac and Cry2A) in cotton genotypes under different genetic backgrounds[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2818-2832.
[12] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
[13] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, ZHANG Xiang, CHEN Yuan, CHEN De-hua. Effects of plant density and mepiquat chloride application on cotton boll setting in wheat–cotton double cropping system[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2372-2381.
[14] WANG Shi-hong, MAO Li-li, SHI Jia-liang, NIE Jun-jun, SONG Xian-liang, SUN Xue-zhen. Effects of plant density and nitrogen rate on cotton yield and nitrogen use in cotton stubble retaining fields[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2090-2099.
[15] CHEN Yuan, LIU Zhen-yu, HENG Li, Leila I. M. TAMBEL, CHEN De-hua. High plant density increases seed Bt endotoxin content in Bt transgenic cotton[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1796-1806.
No Suggested Reading articles found!