Special Issue:
园艺-分子生物合辑Horticulture — Genetics · Breeding
|
|
|
Constructing the wolfberry (Lycium spp.) genetic linkage map using AFLP and SSR markers |
YIN Yue1, 2, AN Wei2, ZHAO Jian-hua2, LI Yan-long2, FAN Yun-fang2, CHEN Jin-huan3, CAO You-long2, ZHAN Xiang-qiang1 |
1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China
2 National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan 751002,
P.R.China
3 College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R.China
|
|
|
摘要
遗传连锁图谱在数量性状位点和分子标记辅助选择育种中具有重要意义。枸杞是我国重要的药食同源植物。然而,由于缺乏基因组和遗传资源,枸杞遗传连锁图谱的构建报到很少。在本研究中,采用双假测交理论,以‘北方枸杞’为母本,‘宁夏黄果’为父本杂交获得89株F1群体为试材,利用SSR和AFLP技术构建枸杞的分子遗传连锁图谱。共获得12个连锁群,包含165个标记位点(74个AFLP和91个SSR),覆盖基因组557.6cM,标记间平均图距为3.38cM。每个连锁群的标记数在3~12个,每个连锁群长度为8.6~58.3cM。连锁群上有29个偏分离标记,主要集中LG4和LG9上。这是第一张利用SSR和AFLP标记构建的枸杞属植物遗传连锁图谱,可为枸杞属植物遗传育种改良和辅助基因组组装提供理论依据。
Abstract Genetic linkage maps are important for quantitative trait locus (QTL) and marker-assisted selection breeding. The wolfberry (Lycium spp.) is an important food and traditional medicine in China. However, few construction genetic linkage maps have been reported because of the lack of genomic and genetic resources. In this study, a population of 89 F1 seedings was derived from a cross between two heterozygous parents, L. chinense var. potaninii ‘BF-01’ (female) and L. barbarum var. auranticarpum ‘NH-01’ (male), in order to construct a genetic linkage map using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers based on the double pseudo-test cross mapping strategy. The resulting genetic map consisted of 165 markers (74 AFLPs and 91 SSRs) distributed across 12 linkage groups and spanned a total length of 557.6 cM with an average distance of 3.38 cM between adjacent markers. The 12 linkage groups contained 3 to 21 markers and ranged in length from 8.6 to 58.3 cM. Twenty-nine segregated markers distributed in the map were mainly located on LG4 and LG9 linkage groups at P<0.05. This is the first linkage map of Lycium species using SSR and AFLP markers, which can serve as basis for improving genes and selective breeding of the genome assembly.
|
Received: 28 May 2020
Accepted: 23 December 2020
|
Fund: This research was financially supported by the National Natural Science Foundation of China (31760218), the Third Batch of Ningxia Youth Talents Supporting Program (TJGC2018022) and the Whole Industry Chain Innovation Demonstration Project of Ningxia Academy of Agriculture and Forestry Sciences, China (ERS-2016-0405). |
About author: YIN Yue, E-mail: yueyin0112@aliyun.com; Correspondence CAO You-long, Tel/Fax: +86-951-6886785, E-mail: youlongchk@163.com; ZHAN Xiang-qiang, Tel/Fax: +86-29-87082613, E-mail: zhanxq77@nwsuaf.edu.cn |
Cite this article:
YIN Yue, AN Wei, ZHAO Jian-hua, LI Yan-long, FAN Yun-fang, CHEN Jin-huan, CAO You-long, ZHAN Xiang-qiang.
2022.
Constructing the wolfberry (Lycium spp.) genetic linkage map using AFLP and SSR markers. Journal of Integrative Agriculture, 21(1): 131-138.
|
Akin M, Nyberg A, Postman J, Mehlenbacher S, Bassil N V. 2016. A multiplexed microsatellite fingerprinting set for hazelnut cultivar identification. European Journal of Horticultural Science, 81, 327–338.
Andru S, Pan Y B, Thongthawee S, Burner D M , Kimbeng C A. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. linkage mapping using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics, 123, 77–93.
Arjun K, Dhaliwal M S, Jindal S K, Fakrudin B. 2018. Mapping of fruit length related QTLs in interspecific cross (Capsicum annuum L.×Capsicum galapagoense Hunz.) of chilli. Breeding Science, 68, 219–226.
Chang R C C, So K F. 2008. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cellular and Molecular Neurobiology, 28, 643–652.
Chang Y, Oh E U, Lee M S, Kim H B, Moon D G, Song K J. 2017. Construction of a genetic linkage map based on RAPD, AFLP, and SSR markers for tea plant (Camellia sinensis). Euphytica, 213, 190.
Chen C L, Xu M, Wang C, Qiao G, Wang W, Tan Z, Wu T, Zhang Z. 2017. Characterization of the Lycium barbarum fruit transcriptome and development of EST-SSR markers. PLoS ONE, 12, e0187738.
Chen H, Song Y, Li L T, Khan A M, Li X G, Korban S S, Wu J, Zhang S L. 2015. Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Molecular Biology Reporter, 33, 316–325.
Chen J H, Zhang D Z, Zhang C, Xu M L, Yin W L. 2017. Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum. Journal of Zhejiang University (Science B: Biomedicine & Biotechnology), 18, 1002–1021.
Chen J J, Ding J H, Ouyuang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang X L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. 2008. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica–japonica hybrids in rice. Proceedings of the National Academy of Sciences of the United States of America, 105, 11436–11441.
Cheng J, Zhou Z W, Sheng H P, He L J, Fan X W, He Z X, Sun T, Zhang X J, Zhao R J, Gu L, Cao C H, Zhou S F. 2015. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy, 9, 33–78.
Dong H, Shang X D, Zhao X Y, Yu H L, Jiang N, Zhang M Y, Tan Q, Zhou C Y, Zhang L J. 2019. Construction of a genetic linkage map of Lentinula edodes based on SSR, SRAP and TRAP markers. Breeding Science, 69, 585–591.
Fierst J L. 2015. Using linkage maps to correct and scaffold de novo genome assemblies: Methods, challenges, and computational tools. Frontiers in Genetics, 6, 220–220.
Gao H, Lv Y, Liu Y X, Li J J, Wang X G, Zhou Z Q, Tipoe G L, Ouyang S Y, Guo Y T, Zhang J H, Hao Z F, Li W, Koike K, So K F, Xiao J. 2019. Wolfberry-derived zeaxanthin dipalmitate attenuates ethanol-induced hepatic damage. Molecular Nutrition & Food Research, 63, e1801339.
Gartner G A L, MeCouch S R, Moncada M D P. 2013. A genetic map of an interspecific diploid pseudo testcross population of coffee. Euphytica, 192, 305–323.
Gulsen O, Uzun A, Canan I, Seday Y, Canihos E. 2010. A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica, 173, 265–277.
Guo Q, Guo L L, Zhang L, Zhang L X, Ma H L, Guo D L, Hou X G. 2017. Construction of a genetic linkage map in tree peony (Paeonia Sect. Moutan) using simple sequence repeat (SSR) markers. Scientia Horticulturae, 219, 294–301.
Hollenbeck C M, Portnoy D S, Wetzel D, Sherwood T A, Samollow P B, Gold J R. 2017. Linkage mapping and comparative genomics of red drum (Sciaenops ocellatus) using next-generation sequencing. G3: Genes|Genomes|Genetics, 7, 843–850.
Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, Kochan K J, Riggs P K, Scheffler J A, Udall J A, Ulloa M, Wang S S, Zhu Q H, Bag S K, Bhardwai A, Burke J J, et al. 2015. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3: Genes|Genomes|Genetics, 5, 1187–1209.
Kakani A, Saha S, Sapra V T, Zipf A, Stelly D M. 1999. Genetic mechanism and chromosomal location of pollen-specific gene(s) in Gossypium. Crop science, 39, 668–673.
Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N. 2013. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics, 14, 32.
Kosambi D D. 2016. The Estimation of Map Distance from Recombination Values. Springer, New Delhi. pp.172–175.
Khan M K R, Chen H D, Zhou Z L, IIyas M, Wang X X, Cai X Y, Wang C Y, Liu F, Wang K B. 2016. Genome wide SSR high density genetic map construction from an interspecific cross of Gossypium hirsutum×Gossypium tomentosum. Frontiers in Plant Science, 7, 436.
Luo C, Chen D L, Cheng X, Liu H, Li Y H, Huang C L. 2018. SSR analysis of genetic relationship and classification in Chrysanthemum germplasm collection. Horticultural Plant Journal, 4, 73–82.
Liang S X, Zhen S X, Zhang T Z. 2006. Segregation distortion and its effect on genetic mapping in plants. Chinese Journal of Agricultural Biotechnology, 3, 163–169.
Matsubara K, Thidar K, Sano Y. 2003. A gene block causing cross-incompatibility hidden in wild and cultivated rice. Genetics, 165, 343–352.
Van Ooijen J W. 2006. JoinMap®4: Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Kyazma B V, Wageningen, Netherlands.
Padmakar B, Kanupriya C, Latha P M, Prashant K S, Dinesh M R, Sailaja D, Aswath C. 2015. Development of SRAP and SSR marker-based genetic linkage maps of guava (Psidium guajava L.). Scientia Horticulturae, 192, 158–165.
Potterat O. 2010. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76, 7–19.
Rinehart T A. 2004. AFLP analysis using GeneMapper® software and an Excel® macro that aligns and converts output to binary. Biotechniques, 37, 186–188.
Ronoh R, Linde M, Winkelmann, Onyanggo M A, Dinssa F F, Debener T. 2018. Development of next-generation sequencing (NGS)-based SSRs in African nightshades: Tools for analyzing genetic diversity for conservation and breeding. Scientia Horticulturae, 235, 152–159.
Tan Z Y, Zhang Z Q, Sun X J, Li Q Q, Sun Y, Yang P, Wang W W, Liu X Y, Chen C L, Liu D X, Teng Z H, Guo K, Zhang J, Liu D, Zhang Z S. 2018. Genetic map construction and fiber quality QTL mapping using the cottonSNP80K array in upland cotton. Frontiers in Plant Science, 9, 225.
Veselá P, Volařík D, Mráček J. 2016. Optimisation of AFLP for extremely large genomes over 70 Gb. Molecular Ecology Resources, 16, 933–945.
Voorrips R E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93, 77–78.
Vos P, Hogers R, Bleeker M, Reijans M, van de lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Ressearch, 23, 4407–4414.
Wang C C, Chang S C, Inbaraj B S, Chen B H. 2010. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 120, 184–192.
Wang J N, Chen J F, Chen W S, Zhou X Y, Xu D, Li J H, Qi X. 2015. Population genetic diversity of wild Lycium ruthenicum in Qaidam inferred from AFLP markers. Chinese Journal of Plant Ecology, 39, 1003–1011. (in Chinese)
Wang S F, Liu X, Ding M Y, Ma S C, Zhao J, Wang Y, Li S P. 2019. 2-O-β-d-glucopyranosyl-l-ascorbic acid, a novel vitamin C derivative from Lycium barbarum, prevents oxidative stress. Redox Biology, 52, 2092–2096.
Wetters S, Horn T, Nick P. 2018. Goji who? Morphological and DNA based authentication of a “superfood”. Frontiers in Plant Science, 9, 1859.
Yao R Y, Heinrich M, Wang Z G, Weckerle C S. 2018. Quality control of goji (fruits of Lycium barbarum L. and L. chinense Mill.): A value chain analysis perspective. Jouranl of Ethnopharmacology, 224, 349–358.
Yu X X, Li X L, Ma Y H, Yu Z, Li Z Z. 2012. A genetic linkage map of crested wheatgrass based on AFLP and RAPD markers. Genome, 55, 327–335.
Zhang R P, Wu J, Li X G, Khan M W, Chen H, Korban S S, Zhang S L. 2013. An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Molecular Biology Reporter, 31, 678–687.
Zhang T T, Li X Z, Yang Y T, Guo X, Feng X, Dong X Y, Chen S X. 2019. Genetic analysis and QTL mapping of fruit length and diameter in a cucumber (Cucumber sativus L.) recombinant inbred line (RIL) population. Scientia Horticulturae, 250, 214–222.
Zhao J H, Xu Y H, Li H X, Yue Y, An W, Li Y L, Wang Y J, Fan Y F, Wan R, Guo X, Cao Y L. 2019. A SNP-based high-density genetic map of leaf and fruit related quantitative trait loci in wolfberry (Lycium Linn.). Frontiers in Plant Science, 10, 977.
Zhao L Q, Qiu Z Q, Narasimhamoorthy B, Greaves J A. 2013. Development of a rapid, high-throughput method for quantification of zeaxanthin in Chinese wolfberry using HPLC–DAD. Industrial Crops and Products, 47, 51–57.
Zhao X H, Zhang J C, Zhang Z Y, Wang Y R, Xie W G. 2017. Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers. Hereditas, 154, 15.
Zheng X J, Tang Y Q, Ye J L, Pan Z Y, Tan M L, Xie Z Z, Chai L J, Xu Q, Fraser P D, Deng X X. 2019. SLAF-based construction of a high-density genetic map and its application in QTL mapping of carotenoids content in citrus cruit. Journal of Agricultural and Food Chemistry, 67, 994–1002.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|