Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 2961-2980    DOI: 10.1016/j.jia.2023.02.024
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Dek219 encodes the DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize
XIE Si-di1*, TIAN Ran1*, ZHANG Jun-jie2, LIU Han-mei2, LI Yang-ping1, HU Yu-feng1, YU Guo-wu3, HUANG Yu-bi1#, LIU Ying-hong4#
1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 College of Life Science, Sichuan Agricultural University, Ya’an 625014, P.R.China
3 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, P.R.China
4 Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

染色质可及性在基因转录调控中起着至关重要作用。然而,染色质可及性的调控机制,及其调控玉米关键基因表达和籽粒发育的机制尚不清楚。本研究中,我们分离了一个玉米籽粒突变体,将其命名为dek219,该突变体表现为粉质胚乳和胚停止发育。Dek219编码DICER-LIKE1 (DCL1)蛋白,一种miRNA生物发生的必需酶。Dek219功能缺失导致大多数miRNAs和组蛋白基因的表达水平显著降低。进一步研究表明,热激转录因子Hsf17-Zm00001d016571模块可能是影响组蛋白基因表达的因素之一。转座酶可及染色质测序分析(ATAC-seq)表明,与野生型(WT)相比,dek219的染色质可及性发生了改变,这可能调控了籽粒发育中关键基因的表达。通过分析WTdek219之间的差异表达基因(DEGs)和差异可染色质区域(ACRs),我们鉴定到119个受染色质可及性调控的候选基因,包括已报道的玉米籽粒发育关键基因。综上所述,这些结果表明Dek219影响染色质可及性和关键基因的表达,是玉米籽粒发育所必需的。



Abstract  

Chromatin accessibility plays a vital role in gene transcriptional regulation.  However, the regulatory mechanism of chromatin accessibility, as well as its role in regulating crucial gene expression and kernel development in maize (Zea mays) are poorly understood.  In this study, we isolated a maize kernel mutant designated as defective kernel219 (dek219), which displays opaque endosperm and embryo abortion.  Dek219 encodes the DICER-LIKE1 (DCL1) protein, an essential enzyme in miRNA biogenesis.  Loss of function of Dek219 results in significant reductions in the expression levels of most miRNAs and histone genes.  Further research showed that the Heat shock transcription factor17 (Hsf17)-Zm00001d016571 module may be one of the factors affecting the expression of histone genes.  Assay results for transposase-accessible chromatin sequencing (ATAC-seq) indicated that the chromatin accessibility of dek219 is altered compared with that of wild type (WT), which may regulate the expression of crucial genes in kernel development.  By analyzing differentially expressed genes (DEGs) and differentially accessible chromatin regions (ACRs) between WT and dek219, we identified 119 candidate genes that are regulated by chromatin accessibility, including some reported to be crucial genes for kernel development.  Taken together, these results suggest that Dek219 affects chromatin accessibility and the expression of crucial genes that are required for maize kernel development

Keywords:  maize       kernel development       chromatin accessibility       histone       miRNA  
Received: 21 October 2022   Accepted: 04 January 2023
Fund: 

This research was funded by the National Natural Science Foundation of China (32072071) and the National Key Research and Development Program of China (2021YFF1000304).  

About author:  XIE Si-di, E-mail: xiesidichn@163.com; TIAN Ran, E-mail: tianranchn@163.com; #Correspondence HUANG Yu-bi, Tel: +86-28-86290875, E-mail: yubihuang@sohu.com; LIU Ying-hong, Tel: +86-28-86290916, E-mail: 18926348@qq.com * These authors contributed equally to this study.

Cite this article: 

XIE Si-di, TIAN Ran, ZHANG Jun-jie, LIU Han-mei, LI Yang-ping, HU Yu-feng, YU Guo-wu, HUANG Yu-bi, LIU Ying-hong. 2023. Dek219 encodes the DICER-LIKE1 protein that affects chromatin accessibility and kernel development in maize. Journal of Integrative Agriculture, 22(10): 2961-2980.

Bhave M R, Lawrence S, Barton C, Hannah L C. 1990. Identification and molecular characterization of shrunken-2 cDNA clones of maize. The Plant Cell, 2, 581–588.
Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A, Kappel C, Bäurle I. 2016. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife, 5, e17061.
Buenrostro J D, Giresi P G, Zaba L C, Chang H Y, Greenleaf W J. 2013. Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics. Nature Methods, 10, 1213–1218.
Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology, 143, 251–262.
Charng Y Y, Liu H C, Liu N Y, Hsu F C, Ko S S. 2006. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology, 140, 1297–1305.
Chen C Z, Wang Y L, He M X, Li Z W, Shen L, Li Q, Ren D Y, Hu J, Zhu L, Zhang G H, Gao Z Y, Zeng D L, Guo L B, Qian Q, Zhang Q. 2023. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development. Journal of Integrative Agriculture, 22, 972–980.
Chen J, Li E, Zhang X, Dong X, Lei L, Song W, Zhao H, Lai J. 2017. Genome-wide nucleosome occupancy and organization modulates the plasticity of gene transcriptional status in maize. Molecular Plant, 10, 962–974.
Chen J, Yi Q, Cao Y, Wei B, Zheng L, Xiao Q, Xie Y, Gu Y, Li Y, Huang H, Wang Y, Hou X, Long T, Zhang J, Liu H, Liu Y, Yu G, Huang Y. 2016. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. Journal of Experimental Botany, 67, 1327–1338.
Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang L, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 375, eabg7985.
Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. 2017. Dek35 encodes a PPR protein that affects cis-splicing of mitochondrial nad4 intron 1 and seed development in maize.  Molecular Plant, 10, 427–441.
Chen Y, Fu Z, Zhang H, Tian R, Yang H, Sun C, Wang L, Zhang W, Guo Z, Zhang X, Tang J. 2020. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. Plant Biotechnology Journal, 18, 2420–2435.
Clark J K, Sheridan W F. 1991. Isolation and characterization of 51 embryo-specific mutations of maize. The Plant Cell, 3, 935–951.
Dai D, Ma Z, Song R. 2021. Maize kernel development.  Molecular Breeding, 41, 2.
Dai X, Tu X, Du B, Dong P, Sun S, Wang X, Sun J, Li G, Lu T, Zhong S, Li P. 2022. Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize. The Plant Journal, 109, 675–692.
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, Graf A, Bäurle I. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications, 12, 3426.
Gao R X, Hu M J, Zhao H M, Lai J S, Song W B. 2022. Genetic dissection of ear-related traits using immortalized F2 population in maize. Journal of Integrative Agriculture, 21, 2492–2507.
Gruber J J, Olejniczak S H, Yong J, La Rocca G, Dreyfuss G, Thompson C B. 2012. Ars2 promotes proper replication-dependent histone mRNA 3´ end formation. Molecular Cell, 45, 87–98.
He Y, Wang J, Qi W, Song R. 2019. Maize Dek15 encodes the cohesin-loading complex subunit SCC4 and is essential for chromosome segregation and kernel development. The Plant Cell, 31, 465–485.
Hsin J P, Sheth A, Manley J L. 2011. RNAP II CTD phosphorylated on Threonine-4 is required for histone mRNA 3´ end processing. Science, 334, 683–686.
Ji C, Xu L, Li Y, Fu Y, Li S, Wang Q, Zeng X, Zhang Z, Zhang Z, Wang W, Wang J, Wu Y. 2022. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Molecular Plant, 15, 468–487.
Jiang C, Pugh B F. 2009. Nucleosome positioning and gene regulation: Advances through genomics. Nature Reviews Genetics, 10, 161–172.
Kakumanu A, Ambavaram M M R, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. 2012. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiology, 160, 846–867.
Kumar S V, Wigge P A. 2010. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140, 136–147.
Lee W, Tillo D, Bray N, Morse R H, Davis R W, Hughes T R, Nislow C. 2007. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genetics, 39, 1235–1244.
Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lv Y, Zhao H, Xiao H, Song R. 2015a. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize.  The Plant Cell, 27, 532–545.
Li C, Shen Y, Meeley R, McCarty D R, Tan B C. 2015b. Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. The Plant Journal, 84, 785–799.
Li C, Yue Y, Chen H, Qi W, Song R. 2018. The ZmbZIP22 transcription factor regulates 27-kD γ-Zein gene transcription during maize endosperm development.  The Plant Cell, 30, 2402–2424.
Li G, Liu S, Wang J, He J, Huang H, Zhang Y, Xu L. 2014. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. The Plant Journal, 78, 706–714.
Li Q, Wang J, Ye J, Zheng X, Xiang X, Li C, Fu M, Wang Q, Zhang Z, Wu Y. 2017. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III.  The Plant Cell, 29, 2661–2675.
Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X. 2005. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiology, 139, 296–305.
Liu J, Huang J, Guo H, Lan L, Wang H, Xu Y, Yang X, Li W, Tong H, Xiao Y, Pan Q, Qiao F, Raihan M S, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, et al. 2017. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiology, 175, 774–785.
Liu M, Tan X, Yang Y, Liu P, Zhang X, Zhang Y, Wang L, Hu Y, Ma L, Li Z, Zhang Y, Zou C, Lin H, Gao S, Lee M, Lübberstedt T, Pan G, Shen Y. 2020. Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnology Journal, 18, 207–221.
Lu X, Liu J, Ren W, Yang Q, Chai Z, Chen R, Wang L, Zhao J, Lang Z, Wang H, Fan Y, Zhao J, Zhang C. 2018. Gene-indexed mutations in maize.  Molecular Plant, 11, 496–504.
Luger K, Mader A W, Richmond R K, Sargent D F, Richmond T J. 1997. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature, 389, 251–260.
Ma Z, Dooner H K. 2004. A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. The Plant Journal, 37, 92–103.
Magnard J L, Heckel T, Massonneau A, Wisniewski J P, Cordelier S, Lassagne H, Perez P, Dumas C, Rogowsky P M. 2004. Morphogenesis of maize embryos requires ZmPRPL35-1 encoding a plastid ribosomal protein. Plant Physiology, 134, 649–663.
Marand A P, Chen Z, Gallavotti A, Schmitz R J. 2021. A cis-regulatory atlas in maize at single-cell resolution. Cell, 184, 3041–3055.
Meiri D, Breiman A. 2009. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.  The Plant Journal, 59, 387–399.
Minnoye L, Marinov G K, Krausgruber T, Pan L, Marand A P, Secchia S, Greenleaf W J, Furlong E E M, Zhao K, Schmitz R J, Bock C, Aerts S. 2021. Chromatin accessibility profiling methods. Nature Reviews Methods Primers, 1, 10.
Park W, Li J, Song R, Messing J, Chen X. 2002. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 12, 1484–1495.
Parvathaneni R L, Bertolini E, Shamimuzzaman M, Vera D L, Lung P, Rice B R, Zhang J, Brown P J, Lipka A E, Bass H W, Eveland A L. 2020. The regulatory landscape of early maize inflorescence development. Genome Biology, 21, 165.
Pecinka A, Dinh H Q, Baubec T, Rosa M, Lettner N, Scheid O M. 2010. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. The Plant Cell, 22, 3118–3129.
Pennings S, Meersseman G, Bradbury E M. 1994. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes. Proceedings of the National Academy of Sciences of the United States of America, 91, 10275–10279.
Preiss J, Danner S, Summers P S, Morell M, Barton C R, Yang L, Nieder M. 1990. Molecular characterization of the Brittle-2 gene effect on maize endosperm ADPglucose pyrophosphorylase subunits. Plant Physiology, 92, 881–885.
Qi W, Lu L, Huang S, Song R. 2019. Maize Dek44 encodes mitochondrial ribosomal protein L9 and is required for seed development. Plant Physiology, 180, 2106–2119.
Qian Y, Cheng Y, Cheng X, Jiang H, Zhu S, Cheng B. 2011. Identification and characterization of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families in maize. Plant Cell Reports, 30, 1347–1363.
Schauer S E, Jacobsen S E, Meinke D W, Ray A. 2002.  DICER-LIKE1: Blind men and elephants in Arabidopsis development. Trends in Plant Science, 7, 487–491.
Schmidt R J, Burr F A, Burr B. 1987. Transposon tagging and molecular analysis of the maize regulatory locus opaque-2. Science, 238, 960–963.
Schones D E, Cui K, Cuddapah S, Roh T, Barski A, Wang Z, Wei G, Zhao K. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell, 132, 887–898.
Schümperli D, Pillai R S. 2004. The special Sm core structure of the U7 snRNP: Far-reaching significance of a small nuclear ribonucleoprotein. Cellular and Molecular Life Sciences, 61, 2560–2570.
Shen Y, Li C, McCarty D R, Meeley R, Tan B C. 2013. Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. The Plant Journal, 74, 792–804.
Shure M, Wessler S, Fedoroff N. 1983. Molecular identification and isolation of the Waxy locus in maize. Cell, 35, 225–233.
Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, Barkan A, Consonni G, Rogowsky P M. 2012. PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. Journal of Experimental Botany, 63, 5843–5857.
Sosso D, Luo D, Li Q, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. 2015. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 47, 1489–1493.
Stief A, Altmann S, Hoffmann K, Pant B D, Scheible W R, Bäurle I. 2014. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 26, 1792–1807.
Sun F, Zhang X, Shen Y, Wang H, Liu R, Wang X, Gao D, Yang Y Z, Liu Y, Tan B C. 2018. The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. The Plant Journal, 95, 919–932.
Sun Y, Dong L, Zhang Y, Lin D, Xu W, Ke C, Han L, Deng L, Li G, Jackson D, Li X, Yang F. 2020a. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biology, 21, 143.
Sun Y, Zhang Y, Aik W S, Yang X C, Marzluff W F, Walz T, Dominski Z, Tong L. 2020b. Structure of an active human histone pre-mRNA 3´-end processing machinery.  Science, 367, 700–703.
Suzuki M, Wu S, Mimura M, Alseekh S, Fernie A R, Hanson A W, McCarty D R. 2020. Construction and applications of a B vitamin genetic resource for investigation of vitamin-dependent metabolism in maize. The Plant Journal, 101, 442–454.
Thompson B E, Basham C, Hammond R, Ding Q, Kakrana A, Lee T F, Simon S A, Meeley R, Meyers B C, Hake S.  2014.  The dicer-like1 homolog fuzzy tassel is required for the regulation of meristem determinacy in the inflorescence and vegetative growth in maize. The Plant Cell, 26, 4702–4717.
Tisdale S, Lotti F, Saieva L, Van Meerbeke J P, Crawford T O, Sumner C J, Mentis G Z, Pellizzoni L. 2013. SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3´-end formation of histone mRNAs.  Cell Reports, 5, 1187–1195.
Wang G, Qi W, Wu Q, Yao D, Zhang J, Zhu J, Wang G, Wang G, Tang Y, Song R. 2014a. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiology, 165, 582–594.
Wang G, Zhang J, Wang G, Fan X, Sun X, Qin H, Xu N, Zhong M, Qiao Z, Tang Y, Song R. 2014b. Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize. The Plant Cell, 26, 2582–2600.
Yang N, Lu Y, Yang X, Huang J, Zhou Y, Ali F, Wen W, Liu J, Li J, Yan J. 2014. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genetics, 10, e1004573.
Yang Y, Ding S, Wang Y, Li C, Shen Y, Meeley R, McCarty D R, Tan B C. 2017. Small kernel2 encodes a glutaminase in vitamin B6 biosynthesis essential for maize seed development. Plant Physiology, 174, 1127–1138.
Yin L L, Xue H W. 2012. The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. The Plant Cell, 24, 1049–1065.
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572.
Yuan N, Wang J, Zhou Y, An D, Xiao Q, Wang W, Wu Y.  2019. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Science, 287, 110203.
Zeeman S C, Kossmann J, Smith A M. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 61, 209–234.
Zhan J, Li G, Ryu C H, Ma C, Zhang S, Lloyd A, Hunter B G, Larkins B A, Drews G N, Wang X, Yadegari R. 2018. Opaque-2 regulates a complex gene network associated with cell differentiation and storage functions of maize endosperm. The Plant Cell, 30, 2425–2446.
Zhang X, Xie S, Han J, Zhou Y, Liu C, Zhou Z, Wang F, Cheng Z, Zhang J, Hu Y, Hao Z, Li M, Zhang D, Yong H, Huang Y, Weng J, Li X. 2019. Integrated transcriptome, small RNA, and degradome analysis reveals the complex network regulating starch biosynthesis in maize. BMC Genomics, 20, 574.
Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nusbaum C, Myers R M, Brown M, Li W, Liu X S. 2008. Model-based analysis of ChIP-seq (MACS).  Genome Biology, 9, R137.
Zhang Y F, Hou M M, Tan B C. 2013. The requirement of WHIRLY1 for embryogenesis is dependent on genetic back-ground in maize. PLoS ONE, 8, e67369.  
Zhang Z, Teotia S, Tang J, Tang G. 2019. Perspectives on microRNAs and phased small interfering RNAs in maize (Zea mays L.): Functions and big impact on agronomic traits enhancement. Plants, 8, 170.
Zhang Z, Zheng X, Yang J, Messing J, Wu Y. 2016. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis.  Proceedings of the National Academy of Sciences of the United States of America, 113, 10842–10847.
Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang B B, Kong D X, Wei H B, Wang H Y. 2022. Creation of two hyperactive variants of phytochrome B1 for attenuating shade avoidance syndrome in maize. Journal of Integrative Agriculture, 21, 1253–1265.
Zhu C, Jin G, Fang P, Zhang Y, Feng X, Tang Y, Qi W, Song R. 2019. Maize pentatricopeptide repeat protein DEK41 affects cis-splicing of mitochondrial nad4 intron 3 and is required for normal seed development. Journal of Experimental Botany, 70, 3795–3808.


[1] WANG Peng, WANG Cheng-dong, WANG Xiao-lin, WU Yuan-hua, ZHANG Yan, SUN Yan-guo, SHI Yi, MI Guo-hua. Increasing nitrogen absorption and assimilation ability under mixed NO3 and NH4+ supply is a driver to promote growth of maize seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1896-1908.
[2] SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui. Genetic dissection of crown root traits and their relationships with aboveground agronomic traits in maize[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3394-3407.
[3] ZHANG Jiao-jiao, LI Ya-qi, SHI Mei, WANG Yu-sha, TANG Yao, WANG Xian-zhong. Cold plasma promotes Sertoli cell proliferation via AMPK-mTOR signaling pathway[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2700-2719.
[4] SONG Xiao-fei, GE Dan-feng, XIE Yang, LI Xiao-li, SUN Cheng-zhen, CUI Hao-nan, ZHU Xue-yun, LIU Ren-yi, YAN Li-ying. Genome-scale mRNA and miRNA transcriptomic insights into the regulatory mechanism of cucumber corolla opening[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2603-2614.
[5] XIAO Shan, FANG Qi, LIU Ming-ming, ZHANG Jiao, WANG Bei-bei, YAN Zhi-chao, WANG Fang, David W. STANLEY, YE Gong-yin. Genome-wide characterization of miRNA and siRNA pathways in the parasitoid wasp Pteromalus puparum[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1106-1115.
[6] ZHU Lu, JING Jing, QIN Shuai-qi, LU Jia-ni, ZHU Cui-yun, ZHENG Qi, LIU Ya, FANG Fu-gui, LI Yun-sheng, ZHANG Yun-hai, LING Ying-hui. miR-99a-5p inhibits target gene FZD5 expression and steroid hormone secretion from goat ovarian granulosa cells[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1137-1145.
[7] LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu. Metabolic responses to combined water deficit and salt stress in maize primary roots[J]. >Journal of Integrative Agriculture, 2021, 20(1): 109-119.
[8] Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun. Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1731- 1742.
[9] Sooyeon Lim, Gibum Yi. Investigating seed mineral composition in Korean landrace maize (Zea mays L.) and its kernel texture specificity[J]. >Journal of Integrative Agriculture, 2019, 18(9): 1996-2005.
[10] LI Xiang-ling, GUO Li-guo, ZHOU Bao-yuan, TANG Xiang-ming, CHEN Cong-cong, ZHANG Lei, ZHANG Shao-yun, LI Chong-feng, XIAO Kai, DONG Wei-xin, YIN Bao-zhong, ZHANG Yue-chen . Characterization of low-N responses in maize (Zea mays L.) cultivars with contrasting nitrogen use efficiency in the North China Plain[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2141-2152.
[11] GU Ri-liang, HUANG Ran, JIA Guang-yao, YUAN Zhi-peng, REN Li-sha, LI Li, WANG Jian-hua. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1571-1578.
[12] LI Mei-zhen, XIAO Hua-mei, HE Kang, LI Fei. Progress and prospects of noncoding RNAs in insects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 729-747.
[13] HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize[J]. >Journal of Integrative Agriculture, 2019, 18(3): 599-607.
[14] WANG Li-jun, ZHANG Ping, WANG Ruo-nan, WANG Pu, HUANG Shou-bing. Effects of variety and chemical regulators on cold tolerance during maize germination[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2662-2669.
[15] SHI Gui-qing, FU Jing-ying, RONG Ling-jie, ZHANG Pei-yue, GUO Cheng-jin, XIAO Kai. TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2369-2378.
No Suggested Reading articles found!