Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (6): 1570-1584    DOI: 10.1016/S2095-3119(20)63247-6
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of genes involved in regulating MnSOD2 production and root colonization in Bacillus cereus 905
GAO Tan-tan1, DING Ming-zheng2, LI Yan2, ZENG Qing-chao2, WANG Qi2 
Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, P.R.China
2 Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

利用转座子TnYLB-1随机插入技术,构建了蜡样芽胞杆菌905中全基因组范围内的突变体库;通过流式细胞仪和实时荧光定量PCR(qRT-PCR)筛选调控sodA2转录的基因;通过测定细胞中的SOD活性,筛选可以调控MnSOD产量的基因;利用反向PCR技术、基因测序和NCBI数据库搜索得到TnYLB-1插入的基因序列;通过盆栽试验和细菌平板回收技术检测小麦根部不同蜡样芽胞杆菌菌群的数量。【结果】本研究最终获得了7个TnYLB-1转座子插入的突变体菌株,它们在mRNA和蛋白水平上改变sodA2基因的表达。序列分析和BLAST数据比对显示,在蜡样芽胞杆菌905菌株中被TnYLB-1插入的基因与模式菌株蜡样芽胞杆菌ATCC 14579菌株中的同源基因具有高度的保守性。这些基因编码热激诱导型转录抑制因子、氯离子通道蛋白、重组酶A、亚铁离子转运蛋白、核苷二磷酸激酶和组氨酸脱氨酶。此外,本研究实验数据证明,调控sodA2表达的基因同样影响蜡样芽胞杆菌905在小麦根部的定殖能力。负调控sodA2表达的基因显著降低细菌在小麦根部的定殖能力,正调控sodA2表达的基因在一定程度上可以提高细菌在小麦根部的菌群数量。hrcA、clc和recA基因正调控MnSOD2的产量和蜡样芽胞杆菌905在小麦根部的定殖能力;feoB1、feoB2、ndk和hutH基因负调控MnSOD2的产量,并且负调控蜡样芽胞杆菌905在小麦根部的定殖能力。本研究首次鉴定了蜡样芽胞杆菌905中7个调控sodA2基因表达的新基因,并且证实了其可以影响细菌在小麦根部的定殖能力;本工作为研究蜡样芽胞杆菌905在小麦根部的定殖机制指明了研究方向,并为提高PGPR菌株的生物防治效果提供了潜在的有效策略。




Abstract  
sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) in Bacillus cereus 905 plays an essential role in antioxidative stress, nutrition utilization, rhizosphere and phyllosphere colonization.  However, the genes involved in regulating the sodA2 expression have not been clearly elucidated in B. cereus.  In this study, a genome-wide random insertion mutagenesis was constructed by using transposon TnYLB-1 to identify novel genes regulating the sodA2 expression.  Seven mutants that changed the sodA2 expression at both mRNA and protein levels were finally obtained.  Sequence analysis and BLAST data showed that the genes disrupted by TnYLB-1 in B. cereus 905 shared high conservations with those in the B. cereus type strain, ATCC 14579.  These genes encode heat-inducible transcription repressor, chloride channel protein, recombinase A, ferrous iron transport protein, nucleoside diphosphate kinase, and histidine ammonia-lyase.  Besides, we also provided the evidence that the genes regulating the sodA2 expression could influence colonization ability of B. cereus 905 on wheat roots.  Specifically, those genes downregulating the sodA2 expression significantly reduced bacterial colonization on wheat roots, and mutants with increased MnSOD2 activities could enhance bacterial population densities on wheat roots to a certain degree.  Our work provided information that multiple genes are involved in MnSOD2 production and wheat root colonization.  The molecular regulatory pathways through which these genes modulate the sodA2 expression and root colonization need to be investigated extensively in the future.
Keywords:  Bacillus cereus        sodA2        TnYLB-1 transposon        colonization  
Received: 13 February 2020   Accepted:
Fund: This work was supported by the grants from the National Natural Science Foundation of China (31701860) and the Program of Science and Technology of Beijing, China (Z191100004019025).
Corresponding Authors:  Correspondence WANG Qi, Tel: +86-10-62731460, E-mail: wangqi@cau.edu.cn   
About author:  GAO Tan-tan, Tel: +86-10-80794280, E-mail: gaotantan0537 @163.com;

Cite this article: 

GAO Tan-tan, DING Ming-zheng, LI Yan, ZENG Qing-chao, WANG Qi . 2021. Identification of genes involved in regulating MnSOD2 production and root colonization in Bacillus cereus 905. Journal of Integrative Agriculture, 20(6): 1570-1584.

Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A. 2013. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Molecular Plant-Microbe Interactions, 26, 937–945.
Antoine C, Daniele T. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life? The EMBO Journal, 5, 623–630.
Asano Y, Kato Y, Levy C, Baker P, Rice D. 2009. Structure and function of amino acid ammonia-lyases. Biocatalysis and Biotransformation, 22, 133–140.
Bagg A, Neilands J B. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry, 26, 5471–5477.
Baichoo N, Wang T, Ye R, Helmann J. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Molecular Microbiology, 45, 1613–1629.
Ballal A, Manna A C. 2009. Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. Journal of Bacteriology, 191, 3301–3310.
Benov L, Chang L Y, Day B, Fridovich I. 1995. Copper, zinc superoxide dismutase in Escherichia coli: Periplasmic localization. Archives of Biochemistry and Biophysics, 319, 508–511.
Beyer W, Imlay J, Fridovich I. 1991. Superoxide dismutases. Progress in Nucleic Acid Research and Molecular Biology, 40, 221–253.
Le Breton Y, Mohapatra N P, Haldenwang W G. 2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Applied and Environmental Microbiology, 72, 327–333.
Bruce D. 1991. Regulation of bacterial oxidative stress genes. Annual Review of Genetics, 25, 315–337.
Bsat N, Herbig A, Casillas M, Setlow P, Helmann J D. 1998. Bacillus subtilis contains multiple Fur homologues: Identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Molecular Microbiology, 29, 189–198.
Cartron M L, Maddocks S, Gillingham P, Craven C J, Andrews S C. 2006. Feo-transport of ferrous iron into bacteria. BioMetals, 19, 143–157.
Chen C J, Liu M Y, Chang T, Chang W C, Wang B C, Le Gall J. 2003. Crystal structure of a nucleoside diphosphate kinase from Bacillus halodenitrificans: Coexpression of its activity with a Mn-superoxide dismutase. Journal of Structural Biology, 142, 247–255.
Chen X, Choi I Y, Chang T S, Noh Y H, Shin C Y, Wu C F, Ko K H, Kim W K. 2009. Pretreatment with interferon-γ protects microglia from oxidative stress via up-regulation of Mn-SOD. Free Radical Biology and Medicine, 46, 1204–1210.
Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo J H. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15, 848–864.
Clements M O, Watson S P, Foster S J. 1999. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance and pathogenicity. Journal of Bacteriology, 181, 3898–3903.
Compant S, Clément C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry, 42, 669–678.
Cortez N, Carrillo N, Pasternak C, Balzer A, Klug G. 1998. Molecular cloning and expression analysis of the Rhodobacter capsulatus sodB gene, encoding an iron superoxide dismutase. Journal of Bacteriology, 180, 5413–5420.
Ding H, Niu B, Fan H, Li Y, Wang Q. 2016. Draft genome sequence of Bacillus cereus 905, a plant growth-promoting rhizobacterium of wheat. Genome Announcements, 4, e00489-16.
Duran C, Thompson C H, Xiao Q, Hartzell H C. 2010. Chloride channels: Often enigmatic, rarely predictable. Annual Review of Physiology, 72, 95–121.
Eiamphungporn W, Charoenlap N, Vattanaviboon P, Mongkolsuk S. 2006. Agrobacterium tumefaciens soxR is involved in superoxide stress protection and also directly regulates superoxide-inducible expression of itself and a target gene. Journal of Bacteriology, 188, 8669–8673.
Estevez R, Jentsch T J. 2002. CLC chloride channels: Correlating structure with function. Current Opinion in Structural Biology, 12, 531–539.
Fan H, Ru J, Gao T, Yang Y, Wang Q, Li Y. 2016. Construction of the TnYLB-1 transposon mutant library in Bacillus subtilis 9407. China Sciencepaper, 11, 2082–2086. (in Chinese)
Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q. 2017. Biocontrol of bacterial fruit blotch by Bacilllus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Fronties in Microbiology, 8, 1973.
Fee J A. 1991. Regulation of sod genes in Escherichia coli: Relevance to superoxide dismutase function. Molecular Microbiology, 5, 2599–2610.
Fridovich I. 1995. Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64, 97–112.
Fridovich I. 2013. Superoxide dismutase. In: Encyclopedia of Biological Chemistry. 2nd ed. Academic Press,  Waltham. pp. 352–354.
Gao T, Ding M, Yang C H, Fan H, Chai Y. 2019. The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905. Research in Microbiology, 170, 86–96.
Gao T, Foulston L, Chai Y, Wang Q, Losick R. 2015. Alternative modes of biofilm formation by plant-associated Bacillus cereus. Microbiology Open, 4, 452–464.
Gao T, Li Y, Ding M, Chai Y, Wang Q. 2017. The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Research in Microbiology, 168, 524–535.
Glick B R. 1995. The enhancement of plant-growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.
Greenberg J T, Demple B. 1989. A global response induced in Escherichia coli by redox cycling agents overlaps with that induced by peroxide stress. Journal of Bacteriology, 171, 3933–3939.
Gregory E M, Firdovic I. 1973. Induction of superoxide dismutase by molecular oxygen. Journal of Bacteriology, 114, 543–548.
Hantke K. 1981. Regulation of ferric iron transport in Escherichia coli K12: Isolation of a constitutive mutant. Molecular & General Genetics, 182, 288–292.
Harvie D R, Vilchez S, Steggles J R, Ellar D J. 2005. Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology, 151, 569–577.
Hassan H M, Sun H C H. 1992. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 89, 3217–3221.
Hechenberger M, Schwappach B, Fischer W N, Frommer W B, Jentsch T J, Steinmeyer K. 1996. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. The Journal of Biological Chemistry, 271, 33632–33638.
Hitomi M, Nishimura H, Tsujimoto Y, Matsui H, Watanabe K. 2003. Identification of a helix-turn-helix motif of Bacillus thermoglucosidasius HrcA essential for binding to the CIRCE element and thermostability of the HrcA-CIRCE complex, indicating a role as a thermosensor. Journal of Bacteriology, 185, 381–385.
Hu Y, Oliver H F, Raengpradub S, Palmer M E, Orsi R H, Wiedmann M, Boor K J. 2007. Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and σB in Listeria monocytogenes. Applied and Environmental Microbiology, 73, 7981–7991.
Huang Y, Morvay A A, Shi X, Suo Y, Shi C, Knøchel S. 2018. Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a. Food Control, 85, 416–422.
Inaoka T, Matsumura Y, Tsuchido T. 1999. Metal-mediated control of the activity of Bacillus subtilis superoxide dismutase. Biocontrol Science, 4, 55–58.
Iwunze M O, Adeyemo A. 2005. Spectrochemical characterization of L-Histidine in simulated body fluid. Proceedings of SPIE - The International Society for Optical Engineering, 6017, 60170M.
Jentsch T J. 2008. CLC chloride channels and transporters: From genes to protein structure, pathology and physiology. Critical Reviews in Biochemistry and Molecular Biology, 43, 3–36.
Jentsch T J, Stein V, Weinreich F, Zdebik A A. 2002. Molecular structure and physiological function of chloride channels. Physiological Reviews, 82, 503–568.
Jeon J, Kim H, Yun J, Ryu S, Groisman E A, Shin D. 2008. RstA-promoted expression of the ferrous iron transporter FeoB under iron-replete conditions enhances Fur activity in Salmonella enterica. Journal of Bacteriology, 190, 7326–7334.
Kang J E, Kim H D, Park S Y, Pan J G, Kim J H, Yum D Y. 2018. Dietary supplementation with a Bacillus superoxide dismutase protects against γ-radiation-induced oxidative stress and ameliorates dextran sulphate sodium-induced ulcerative colitis in mice. Journal of Crohn’s and Colitis, 12, 860–869.
Kargalioglu Y, Imlay J A. 1994. Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. Journal of Bacteriology, 176, 7653–7658.
Keyer K, Imlay J. 1996. Superoxide accelerates DNA damage by elevating free-iron levels. Proceedings of the National Academy of Sciences of the United States of America, 93, 13635–13640.
Kim J S, Sung M H, Kho D H, Lee J K. 2005. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus. Journal of Bacteriology, 187, 5984–5995.
Kim S N, Bae Y G, Rhee D K. 2008. Dual regulation of dnaK and groE operons by HrcA and Ca++ in Streptococcus pneumoniae. Archives of Pharmacal Research, 31, 462–467.
Kim Y C, Miller C D, Anderson A J. 2000. Superoxide dismutase activity in Pseudomonas putida affects utilization of sugars and growth on root surfaces. Applied and Environmental Microbiology, 66, 1460–1467.
Klee C B. 1972. Metal activation of histidine ammonia-lyase. The Journal of Biological Chemistry, 247, 1398–1406.
Lau C K Y, Krewulak K D, Vogel H J. 2016. Bacterial ferrous iron transport: The Feo system. FEMS Microbiology Reviews, 40, 273–298.
Lugtenberg B, Kamilova F. 2009. Plant growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.
Miller A F. 2012. Superoxide dismutases: Ancient enzymes and new insights. FEBS Letters, 586, 589–595.
Misra G, Aggarwal A, Dube D, Zaman M S, Singh Y, Ramachandran R. 2009. Crystal structure of the Bacillus anthracis nucleoside diphosphate kinase and its characterization reveals an enzyme adapted to perform under stress conditions. Proteins, 76, 496–506.
Nautiyal A, Patil K N, Muniyappa K. 2014. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. Journal of Antimicrobial Chemotherapy, 69, 1834–1843.
Niederhoffer E C, Naranjo C M, Bradley K L, Fee J A. 1990. Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. Journal of Bacteriology, 172, 1930–1938.
Ojha D, Patil K N. 2019. p-Coumaric acid inhibits the Listeria monocytogenes RecA protein functions and SOS response: An antimicrobial target. Biochemical and Biophysical Research Communications, 517, 655–661.
Peng Q, Yang S H, Charkowski A O, Yap M N, Steeber D A, Keen N T, Yang C H. 2006. Population behavior analysis of dspE and pelD regulation in Erwinia chrysanthemi 3937. Molecular Plant-Microbe Interactions, 19, 451–457.
Petersohn A, Brigulla M, Haas S, Hoheisel J, Völker U, Hecker M. 2001. Global analysis of the general stress response of Bacillus subtilis. Journal of Bacteriology, 183, 5617–5631.
Pomposiello P J, Demple B. 2001. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends in Biotechnology, 19, 109–114.
Ramírez-Guadiana F H, Barajas-Ornelas R del C, Corona-Bautista S U, Setlow P, Pedraza-Reyes M. 2016. The RecA-dependent SOS response is active and required for processing of DNA damage during Bacillus subtilis sporulation. PLoS ONE, 11, e0150348.
Reischl S, Wiegert T, Schumann W. 2002. Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. The Journal of Biological Chemistry, 277, 32659–32667.
Reizer J, Saier M H, Deutscher J, Grenier F, Thompson J, Hengstenberg W. 1988. The phosphoenolpyruvate-sugar phosphotransferase system in Gram-positive bacteria-properties, mechanism, and regulation. Critical Reviews in Microbiology, 15, 297–338.
Salvetti S, Faegri K, Ghelardi E, Kolsto A, Senesi S. 2011. Global gene expression profile for swarming Bacillus cereus bacteria. Applied and Environmental Microbiology, 77, 5149–5156.
Sambrook J J, Russell D D W. 2001. Molecular Cloning: A Laboratory Manual. 3rd ed. The Cold Spring Harbor Laboratory Press, USA. pp. 1–2344.
Santos R, Hérouart D, Puppo A, Touati D. 2000. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis. Molecular Microbiology, 38, 750–759.
Sha Y, Wang Q, Li Y. 2016. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. Springerplus, 5, 1238.
Shrihari R Y, Singh N P. 2012. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus. Journal of Food Science, 77, M95–M101.
Stevenson B, Wyckoff E E, Payne S M. 2016. Vibrio cholerae FeoA, FeoB, and FeoC interact to form a complex. Journal of Bacteriology, 198, 1160–1170.
Su J, Li Z, Liao B, Zhu Y, Zhang X, Wang C, He J. 2017. Microcalorimetric study of the effect of manganese on the growth and metabolism in a heterogeneously expressing manganese-dependent superoxide dismutase (Mn-SOD) strain. Journal of Thermal Analysis and Calorimetry, 130, 1407–1416.
Sun S, Sun B, Yang X, Zhang W, Huo J. 2018. Construction of mutant library of Bacillus amyloliquefaciens Bs-18 with the transposon TnYLB-1. Shandong Agricultural Sciences, 50, 12–15. (in Chinese)
Sun S, Yang X, Sun B, Zhang W. 2019. Preliminary identification of genes related to biocontrol function of Bacillus amyloliquefaciens Bs-18. Shandong Agricultural Sciences, 51, 13–15, 23. (in Chinese)
Suo Y, Liu Y, Zhou X, Huang Y, Shi C, Matthews K, Shi X. 2014. Impact of sod on the expression of stress-related genes in Listeria monocytogenes 4b G with/without paraquat treatment. Journal of Food Science, 79, M1745–M1749.
Tainer J A, Getzoff E D, Richardson J S, Richardson D C. 1983. Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306, 284–287.
Takahashi Y, Katoh S, Shikura N, Tomoda H, Omura S. 2003. Superoxide dismutase produced by soil bacteria increases bacterial colony growth from soil samples. The Journal of General and Applied Microbiology, 49, 263–266.
Thakur A, Kumar P, Lata J, Devi N, Chand D. 2018. Thermostable Fe/Mn superoxide dismutase from Bacillus licheniformis SPB-13 from thermal springs of Himalayan region: Purification, characterization and antioxidative potential. International Journal of Biological Macromolecules, 115, 1026–1032.
Touati D. 1988. Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. Journal of Bacteriology, 170, 2511–2520.
Touati D. 1989. The molecular genetics of superoxide dismutase in E. coli. An approach to understanding the biological role and regulation of SOD in relation to other elements of the defense system against oxygen toxicity. Free Radical Research Communications, 8, 1–9.
Treffon J, Chaves-Moreno D, Niemann S, Pieper D H, Voql T, Roth J, Kahl B C. 2020. Importance of superoxide dismutases A and M for protection of Staphylococcus aureus in the oxidative stressful environment of cystic fibrosis airways. Cell Microbiology, 22, e13158.
van der Veen S, Abee T. 2010a. HrcA and DnaK are important for static and continuous-flow biofilm formation and disinfectant resistance in Listeria monocytogenes. Microbiology, 156, 3782–3790.
van der Veen S, Abee T. 2010b. Importance of sigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Applied and Environmental Microbiology, 76, 7854–7860.
van der Veen S, Abee T. 2011. Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS ONE, 6, e28590.
van der Veen S, Hain T, Wouters J A, Hossain H, de Vos W M, Abee T, Chakraborty T, Wells-Bennik M H J. 2007. The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology, 153, 3593–3607.
van der Veen S, van Schalkwijk S, Molenaar D, de Vos W M, Abee T, Wells-Bennik M H J. 2010. The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology, 156, 374–384.
Wang S, Chang L, Wang Y, Wang Q, Yang C H, Mei R. 2009. Nanoparticles affect the survival of bacteria on leaf surfaces. FEMS Microbiology Ecology, 68, 182–191.
Wang X, Tong H, Dong X. 2014. PerR-regulated manganese ion uptake contributes to oxidative stress defense in an oral Streptococcus. Applied and Environmental Microbiology, 80, 2351–2359.
Wang Y, Mo X, Zhang L, Wang Q. 2011. Four superoxide dismutase (isozymes) genes of Bacillus cereus. Annals of Microbiology, 61, 355–360.
Wang Y, Wang H, Yang C H, Wang Q, Mei R. 2007. Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: Their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiology Letters, 272, 206–213.
Weaver E A, Wyckoff E E, Mey A R, Morrison R, Payne S M. 2013. FeoA and FeoC are essential components of the Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. Journal of Bacteriology, 195, 4826–4835.
Wu J, Lin X, Xie H. 2008. OxyR is involved in coordinate regulation of expression of fimA and sod genes in Porphyromonas gingivalis. 2008. FEMS Microbiology Letters, 282, 188–195.
Yu H, Rao X, Zhang K. 2017. Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. Microbiological Research, 205, 125–134.
Zhang J, Wang H, Huang Q, Zhang Y, Zhao L, Liu F, Wang G. 2020. Four superoxide dismutases of Bacillus cereus 0–9 are non-redundant and perform different functions in diverse living conditions. World Journal of Microbiology and Biotechnology, 36, 1–12.
Zhang Q M, Yonei S. 1991. Induction of manganese-superoxide dismutase by membrane-binding drugs in Escherichia coli. Journal of Bacteriology, 173, 3488–3491.
Zheng M, Doan B, Schneider T D, Storz G. 1999. OxyR and SoxRS regulation of Fur. Journal of Bacteriology, 181, 4639–4643.
Zhou Z, Jiang J, Yin J, Cai S. 2014. Identifying interacting proteins of a Caenorhabditis elegans voltage-gated chloride channel CLH-1 using GFP-Trap and mass spectrometry. Acta Physiologica Sinica, 66, 341–348.
[1] SUN Yuan-yuan, ZHANG Qiu-xin, ZHAO Yun-peng, DIAO Yue-hui, GUI Fu-rong, YANG Guo-qing. Beneficial rhizobacterium provides positive plant–soil feedback effects to Ageratina adenophora[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1327-1335.
[2] Anita Bhatnagar, Ritu Lamba. Antimicrobial ability and growth promoting effects of feed supplemented with probiotic bacterium isolated from gut microflora of Cirrhinus mrigala[J]. >Journal of Integrative Agriculture, 2015, 14(3): 583-592.
No Suggested Reading articles found!