Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1396-1411    DOI: 10.1016/j.jia.2023.04.003
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |

Cassava MeRS40 is required for the regulation of plant salt tolerance

MA Xiao-wen1, MA Qiu-xiang2, MA Mu-qing1, CHEN Yan-hang1, 3, GU Jin-bao1, 3, LI Yang1, 3, HU Qing1, LUO Qing-wen3, WEN Ming-fu3, ZHANG Peng2, LI Cong1, 3#, WANG Zhen-yu1, 3#

1 Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, P.R.China

2 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R.China

3 Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, P.R.China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

盐胁迫下选择性剪接可调控丝氨酸/精氨酸丰富(SR)蛋白的表达和异构体的形成。前期研究鉴定了木薯SR蛋白家族中的两个亚家族SCLSR,这两个亚家族参与调控植物非生物胁迫的响应,然而SR蛋白家族中的其他亚家族是否也转录后水平上调控植物盐胁迫应答有待探究。本研究通过11个物种RS亚家族的同源性比对找到37个基因,并系统性的分析了RS40 和 RS31基因在非生物胁迫条件下的表达情况。进一步蛋白结构域分析表明植物RS亚家族在非生物胁迫响应中其作用可能是保守的。在拟南芥中过表达MeRS40基因可通过维持活性氧的动态平衡和调控盐胁迫响应基因的表达进而提高植物的耐盐性。然而,在木薯中过表达MeRS40基因则通过负调节自身pre-mRNA来抑制其内源性基因表达,从而降低转基因木薯的耐盐性此外,MeRS40蛋白与木薯MeU1-70Ks(MeU1-70Ka 和 MeU1-70Kb)蛋白在体内和体外互作。因此,我们的研究为木薯SR蛋白参与调控盐胁迫应答提供了新的理论基础和探索方向。



Abstract  

Soil salinity affects the expression of serine/arginine-rich (SR) genes and isoforms by alternative splicing, which in turn regulates the adaptation of plants to stress.  We previously identified the cassava spliceosomal component 35 like (SCL) and SR subfamilies, belonging to the SR protein family, which are extensively involved in responses to abiotic stresses.  However, the post-transcriptional regulatory mechanism of cassava arginine/serine-rich (RS) subfamily in response to salt stress remains to be explored.  In the current study, we identified 37 genes of the RS subfamily from 11 plant species and systematically investigated the transcript levels of the RS40 and RS31 genes under diverse abiotic stress conditions.  Subsequently, an analysis of the conserved protein domains revealed that plant RS subfamily genes were likely to preserve their conserved molecular functions and played critical functional roles in responses to abiotic stresses.  Importantly, we found that overexpression of MeRS40 in Arabidopsis enhanced salt tolerance by maintaining reactive oxygen species homeostasis and up-regulating the salt-responsive genes.  However, overexpression of MeRS40 gene in cassava reduced salt tolerance due to the depression of its endogenous gene expression by negative autoregulation of its own pre-mRNA.  Moreover, the MeRS40 protein interacted with MeU1-70Ks (MeU1-70Ka and MeU1-70Kb) in vivo and in vitro, respectively.  Therefore, our findings highlight the critical role of cassava SR proteins in responses to salt stress in plants. 

Keywords:  cassava        alternative splicing        serine/arginine-rich proteins        salt stress  
Received: 31 August 2022   Accepted: 23 February 2023
Fund: This work was supported by grants from the Talent Program of Guangdong Academy of Sciences, China (2021GDASYL-20210103038, 2020GDASYL-2020102011, and 2021GDASYL-20210103036), the National Natural Science Foundation of China (32171292 and 32100294), the Guangdong Pearl River Talents Program, China (2021CX02N173), the China Postdoctoral Science Foundation (2020M682629), and the Zhanjiang Plan for Navigation, China (211207157080997).
About author:  MA Xiao-wen, E-mail: ma-xiaowen@outlook.com; #Correspondence WANG Zhen-yu, E-mail: wangzy80@126.com; LI Cong, E-mail: licong202103@163.com

Cite this article: 

MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu. 2023.

Cassava MeRS40 is required for the regulation of plant salt tolerance . Journal of Integrative Agriculture, 22(5): 1396-1411.

Albaqami M, Laluk K, Reddy A S N. 2019. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. Plant Molecular Biology100, 379–390.

Ali G S, Prasad K V, Hanumappa M, Reddy A S. 2008. Analyses of in vivo interaction and mobility of two spliceosomal proteins using FRAP and BiFC. PLoS ONE3, e1953.

An D, Yang J, Zhang P. 2012. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics13, 64.

Barta A, Kalyna M, Reddy A S. 2010. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. The Plant Cell22, 2926–2929.

Berg M G, Singh L N, Younis I, Liu Q, Pinto A M, Kaida D, Zhang Z, Cho S, Sherrill-Mix S, Wan L, Dreyfuss G. 2012. U1 snRNP determines mRNA length and regulates isoform expression. Cell150, 53–64.

Bourgeois C F, Lejeune F, Stevenin J. 2004. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Progress in Nucleic Acid Research and Molecular Biology78, 37–88.

Bredeson J V, Lyons J B, Prochnik S E, Wu G A, Ha C M, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi I Y, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart R S, Setter T L, Gleadow R M, Kulakow P, Ferguson M E, Rounsley S, et al. 2016. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology34, 562–570.

Bull S E, Owiti J A, Niklaus M, Beeching J R, Gruissem W, Vanderschuren H. 2009. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nature Protocols, 4, 1845–1854.

Carvalho R F, Carvalho S D, Duque P. 2010. The plant-specific SR45 protein negatively regulates glucose and ABA signaling during early seedling development in ArabidopsisPlant Physiology154, 772–783.

Carvalho R F, Szakonyi D, Simpson C G, Barbosa I C, Brown J W, Baena-Gonzalez E, Duque P. 2016. The Arabidopsis SR45 splicing factor, a negative regulator of sugar signaling, modulates SNF1-related protein kinase 1 stability. The Plant Cell28, 1910–1925.

Chen L, Yang D, Zhang Y, Wu L, Zhang Y, Ye L, Pan C, He Y, Huang L, Ruan Y L, Lu G. 2018. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato. The New Phytologist219, 176–194.

Chen T, Cui P, Chen H, Ali S, Zhang S, Xiong L. 2013. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in ArabidopsisPLoS Genetics9, e1003875.

Chen Y, Weng X, Zhou X, Gu J, Hu Q, Luo Q, Wen M, Li C, Wang Z Y. 2022. Overexpression of cassava RSZ21b enhances drought tolerance in ArabidopsisJournal of Plant Physiology268, 153574.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaThe Plant Journal16, 735–743.

Duque P. 2011. A role for SR proteins in plant stress responses. Plant Signaling & Behavior6, 49–54.

Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma L, Zhu Z. 2015. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in ArabidopsisMolecular Plant8, 1038–1052.

Fica S M, Nagai K. 2017. Cryo-electron microscopy snapshots of the spliceosome: Structural insights into a dynamic ribonucleoprotein machine. Nature Structural & Molecular Biology24, 791–799.

Golovkin M, Reddy A S. 1999. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. The Journal of Biological Chemistry274, 36428–36438.

Graveley B R. 2000. Sorting out the complexity of SR protein functions. RNA6, 1197–1211.

Graveley B R, Hertel K J, Maniatis T. 1999. SR proteins are ‘locators’ of the RNA splicing machinery. Current Biology9, R6–R13.

Gu J, Ma S, Zhang Y, Wang D, Cao S, Wang Z Y. 2020. Genome-wide identification of cassava serine/arginine-rich proteins: Insights into alternative splicing of pre-mRNAs and response to abiotic stress. Plant & Cell Physiology61, 178–191.

Gu J, Xia Z, Luo Y, Jiang X, Qian B, Xie H, Zhu J K, Xiong L, Zhu J, Wang Z Y. 2018. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thalianaNucleic Acids Research46, 1777–1792.

Hu Q, Chen Y, Zhao Y, Gu J, Ma M, Li H, Li C, Wang Z Y. 2021. Overexpression of SCL30A from cassava (Manihot esculenta) negatively regulates salt tolerance in ArabidopsisFunctional Plant Biology48, 1213–1224.

Isshiki M, Tsumoto A, Shimamoto K. 2006. The serine/arginine-rich protein family in rice plays important roles in constitutive and alternative splicing of pre-mRNA. Plant Cell18, 146–158.

Jansson C, Westerbergh A, Zhang J, Hu X, Sun C. 2009. Cassava, a potential biofuel crop in (the) People’s Republic of China. Applied Energy86, S95–S99.

Johnson T L, Vilardell J. 2012. Regulated pre-mRNA splicing: The ghostwriter of the eukaryotic genome. Biochimica et Biophysica Acta1819, 538–545.

Kaida D, Berg M G, Younis I, Kasim M, Singh L N, Wan L, Dreyfuss G. 2010. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature468, 664–668.

Kalyna M, Lopato S, Voronin V, Barta A. 2006. Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins. Nucleic Acids Research34, 4395–4405.

Kastner B, Will C L, Stark H, Luhrmann R. 2019. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harbor Perspectives in Biology11, a032417.

Kumar K, Sinha S K, Maity U, Kirti P B, Kumar K R R. 2022. Insights into established and emerging roles of SR protein family in plants and animals. Wiley Interdiscip ReviewsRNA, e1763.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution33, 1870–1874.

Letunic I, Khedkar S, Bork P. 2021. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Research49, D458–D460.

Li Y, Guo Q, Liu P, Huang J, Zhang S, Yang G, Wu C, Zheng C, Yan K. 2021. Dual roles of the serine/arginine-rich splicing factor SR45a in promoting and interacting with nuclear cap-binding complex to modulate the salt stress response in ArabidopsisThe New Phytologist230, 641–655.

Lopato S, Forstner C, Kalyna M, Hilscher J, Langhammer U, Indrapichate K, Lorkovic Z J, Barta A. 2002. Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors. The Journal of Biological Chemistry277, 39989–39998.

Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer A R, Barta A. 1999. AtSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes & Development13, 987–1001.

Lorković Z J, Barta A. 2002. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thalianaNucleic Acids Research30, 623–635.

Magnani E, Bartling L, Hake S. 2006. From gateway to multisite gateway in one recombination event. BMC Molecular Biology7, 46.

Matera A G,Wang Z. 2014. A day in the life of the spliceosome. Molecular Cell Biology15, 108–121.

McCallum E J, Anjanappa R B, Gruissem W. 2017. Tackling agriculturally relevant diseases in the staple crop cassava (Manihot esculenta). Current Opinion in Plant Biology38, 50–58.

Morante N, Sánchez T, Ceballos H, Calle F, Pérez J C, Egesi C, Cuambe C E, Escobar A F, Ortiz D, Chávez A L, Fregene M. 2010. Tolerance to postharvest physiological deterioration in cassava roots. Crop Science50, 1333–1338.

Morton M, AlTamimi N, Butt H, Reddy A S N, Mahfouz M. 2019. Serine/Arginine-rich protein family of splicing regulators: New approaches to study splice isoform functions. Plant Science283, 127–134.

Muthusamy M, Yoon E K, Kim J A, Jeong M J, Lee S I. 2020. Brassica rapa SR45a regulates drought tolerance via the alternative splicing of target genes. Genes11, 2073–4425.

Palusa S G, Ali G S, Reddy A S. 2007. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses. The Plant Journal49, 1091–1107.

Plaschka C, Newman A J, Nagai K. 2019. Structural basis of nuclear pre-mRNA splicing: lessons from yeast. Cold Spring Harbor Perspectives in Biology11, a032391.

Quesada V, Macknight R, Dean C, Simpson G G. 2003. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. The EMBO Journal22, 3142–3152.

Rauch H B, Patrick T L, Klusman K M, Battistuzzi F U, Mei W, Brendel V P, Lal S K. 2013. Discovery and expression analysis of alternative splicing events conserved among plant SR proteins. Molecular Biology and Evolution31, 605–613.

Reddy A S, Shad Ali G. 2011. Plant serine/arginine-rich proteins: Roles in precursor messenger RNA splicing, plant development, and stress responses. Wiley Interdisciplinary ReviewsRNA2, 875–889.

Schmal C, Reimann P, Staiger D. 2013. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thalianaPLoS Computational Biology, 9, e1002986.

Schoning J C, Streitner C, Page D R, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D. 2007. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal52, 1119–1130.

So B R, Di C, Cai Z, Venters C C, Guo J, Oh J M, Arai C, Dreyfuss G. 2019. A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells. Molecular Cell76, 590–599.

Sperschneider J, Catanzariti A M, DeBoer K, Petre B, Gardiner D M, Singh K B, Dodds P N, Taylor J M. 2017. LOCALIZER: Subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports7, 44598.

Tanabe N, Kimura A, Yoshimura K, Shigeoka S. 2009. Plant-specific SR-related protein atSR45a interacts with spliceosomal proteins in plant nucleus. Plant Molecular Biology70, 241–252.

Tanabe N, Yoshimura K, Kimura A, Yabuta Y, Shigeoka S. 2007. Differential expression of alternatively spliced mRNAs of Arabidopsis SR protein homologs, atSR30 and atSR45a, in response to environmental stress. Plant & Cell Physiology48, 1036–1049.

Thomas J, Palusa S G, Prasad K V, Ali G S, Surabhi G K, Ben-Hur A, Abdel-Ghany S E, Reddy A S. 2012. Identification of an intronic splicing regulatory element involved in auto-regulation of alternative splicing of SCL33 pre-mRNA. The Plant Journal72, 935–946.

Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research25, 4876–4882.

Thordal-Christensen H, Zhang Z, Wei Y, Collinge D B. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. The Plant Journal11, 1187–1194.

Weng X, Zhou X, Xie S, Gu J, Wang Z Y. 2021. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress. Plant Physiology and Biochemistry160, 130–142.

Wu Z, Zhu D, Lin X, Miao J, Gu L, Deng X, Yang Q, Sun K, Zhu D, Cao X, Tsuge T, Dean C, Aoyama T, Gu H, Qu L J. 2016. RNA binding proteins RZ-1B and RZ-1C play critical roles in regulating pre-mRNA splicing and gene expression during development in ArabidopsisThe Plant Cell28, 55–73.

Yan Q, Xia X, Sun Z, Fang Y. 2017. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes. PLoS Genetics13, e1006663.

Yoshimura K, Mori T, Yokoyama K, Koike Y, Tanabe N, Sato N, Takahashi H, Maruta T, Shigeoka S. 2011. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. Plant & Cell Physiology52, 1786–1805.

Zhang J, Sun Y, Zhou Z, Zhang Y, Yang Y, Zan X, Li X, Wan J, Gao X, Chen R, Huang Z, Li L, Xu Z. 2022. OsSCL30 overexpression reduces the tolerance of rice seedlings to low temperature, drought and salt. Scientific Reports12, 8385.

Zhang W, Du B, Liu D, Qi X. 2014. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene. Biochemical and Biophysical Research Communications455, 312–317.

Zhu J K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology6, 441–445.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.


[1] LI Qiao-lu, LI Zhi-yong, WANG Meng-meng, YAN Jing-wei, FANG Lin. Phosphorylation of SiRAV1 at Ser31 regulates the SiCAT expression to enhance salt tolerance in Setaria italica[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3638-3651.
[2] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[3] WANG Chu-kun, ZHAO Yu-wen, HAN Peng-liang, YU Jian-qiang, HAO Yu-jin, XU Qian, YOU Chun-xiang, HU Da-gang. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2264-2274.
[4] LIU Min-min, LI Ya-lun, LI Guang-cun, DONG Tian-tian, LIU Shi-yang, LIU Pei, WANG Qing-guo. Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2239-2246.
[5] ZHONG Yun-peng, QI Xiu-juan, CHEN Jin-yong, LI Zhi, BAI Dan-feng, WEI Cui-guo, FANG Jin-bao . Growth and physiological responses of four kiwifruit genotypes to salt stress and resistance evaluation[J]. >Journal of Integrative Agriculture, 2019, 18(1): 83-95.
[6] HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2612-2623.
[7] XUE Chen-chen, XU Jin-yan, WANG Can, GUO Na, HOU Jin-feng, XUE Dong, ZHAO Jin-ming, XING Han. Molecular cloning and functional characterization of a soybean GmGMP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants[J]. >Journal of Integrative Agriculture, 2018, 17(03): 539-553.
[8] Sajid Hussain, ZHANG Jun-hua, ZHONG Chu, ZHU Lian-feng, CAO Xiao-chuang, YU Sheng-miao, Allen Bohr James, HU Ji-jie, JIN Qian-yu. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2357-2374.
[9] PARK Sung-chul, YU Yi-cheng, KOU Meng, YAN Hui, TANG Wei, WANG Xin, LIU Ya-ju, ZHANG Yun-gang, KWAK Sang-soo, MA Dai-fu, SUN Jian, LI Qiang. Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae[J]. >Journal of Integrative Agriculture, 2017, 16(10): 2168-2176.
No Suggested Reading articles found!