Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 290-301    DOI: 10.1016/j.jia.2025.04.032
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Sustainable phosphorus (P) management: Impact of low P input with enhancement measures on soil P fractions and crop yield performance on a calcareous soil

Haobo Fan1*, Farman Wali1*, Pengjuan Hu1, Haixia Dong1, Haiqiang Li1, Dan Liang1, Jingru Shen1, Mingxia Gao2, Hao Feng2, Benhua Sun1# 

1 College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Low-Carbon Green Agriculture on Dryland in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China

2 College of Soil and Water Conservation Science and Engineering/Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

磷(P)的持续供应是作物生产中不可或缺的要素。然而,磷资源具有不可再生性,亟需通过可持续管理策略来系统解决其从农业生态系统流失引发富营养化等环境问题和保障全球粮食安全,本研究旨在通过优化施肥措施来减少磷肥投入。2018-2023年,在陕西关中石灰性塿土上开展冬小麦-夏玉米轮作体系田间定位试验,设置 8个处理,即 CK (不施磷肥)、FP (常规施磷)、RP (推荐施磷)、RP80 (磷20%)、SRP80(减磷20%结合秸秆包裹磷肥)、ARP80(减磷20%结合硫酸铵代替尿素)、SARP80 (综合调控措施减磷20%结合秸秆包裹磷肥结合硫酸铵代替尿素)、SARP60(综合调控措施:减磷40%结合秸秆包裹磷肥和硫酸铵代替尿素)。测定了作物产量、磷吸收以及磷效率,并采用Tiessen-Moir磷素分级法测定土壤磷组分。结果表明:除RP80外,施磷处理籽粒产量较CK均有显著提高,增幅在14.9-28.8%。减磷20%结合增效措施(秸秆包裹磷肥和硫酸铵代替尿素)可以显著提高磷农学效率、回收率、表观利用率和偏生产力,增效措施显著提高了土壤活性态和中活性态磷含量。秸秆包裹磷肥和硫酸铵代替尿素主要通过活化中活性态磷组分,促进中活性态磷组分向活性态磷组分转化来提高土壤磷素有效性,从而提高作物产量。因此,秸秆包裹磷肥和硫酸铵代替尿素是石灰性土壤冬小麦-夏玉米轮作体系减磷增效的最有效措施。



Abstract  

The continuous supply of phosphorus (P) is indispensable in crop production.  However, P resources are non-renewable, and environmental concerns like eutrophication associated with its loss from agroecosystems make the sustainable management of P resources essential for ensuring global food security.  This study was designed to reduce mineral P inputs through management practices.  A field experiment comprising a wheat–maize rotation system was conducted in the Guanzhong Plain of Shaanxi Province, China from 2018–2023.  The eight treatments included CK (without P), FP (conventional P application); RP (recommended P); RP80 (20% reduction in RP); SRP80 (20% reduction in RP with straw wrapping); ARP80 (20% reduction in RP with ammonium sulfate instead of urea); SARP80 (20% reduction in RP with straw wrapping and ammonium sulfate instead of urea); and SARP60 (40% reduction in RP with straw wrapping and ammonium sulfate instead of urea).  Crop yield, P uptake, and P fertilizer use efficiency were measured during harvest and throughout the entire period of the study.  At the end of the experiment, P fractions were estimated using the Tiessen-Moir P classification method.  The results revealed that the grain yields of all the treatments except for RP80 were significantly increased compared to CK, with increases of 14.9–28.8%.  Furthermore, agronomic efficiency, apparent P use efficiency, P recovery rate, and partial factor productivity were significantly improved for the treatments that received 20% less P with straw wrapping.  Moreover, the enhancement measures significantly increased labile and moderately labile P in the soil.  Therefore, straw wrapping with ammonium sulfate instead of urea is one of the most effective ways to reduce mineral P inputs while increasing the efficiency of P in wheat–maize rotation systems.

Keywords:  sustainability       bioavailability       fertilization       phosphorus use efficiency       nutrient cycling  
Received: 28 December 2024   Accepted: 21 March 2025 Online: 25 April 2025  
Fund: This study was supported by the National Key Research and Development Program of China (2023YFD1900300 and 2017YFD0200205) and the Agricultural Key-scientific and Core-technological Project of Shaanxi Province, China (2024NYGG011).
About author:  Haobo Fan, Mobile: +86-15138183985, E-mail: fanhb1216@163.com; Farman Wali, Mobile: +86-15619416106, E-mail: walifarman@nwafu.edu.cn; #Correspondence Benhua Sun, Mobile: +86-13572009381, E-mail: sunbenhua@nwafu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Haobo Fan, Farman Wali, Pengjuan Hu, Haixia Dong, Haiqiang Li, Dan Liang, Jingru Shen, Mingxia Gao, Hao Feng, Benhua Sun. 2026. Sustainable phosphorus (P) management: Impact of low P input with enhancement measures on soil P fractions and crop yield performance on a calcareous soil. Journal of Integrative Agriculture, 25(1): 290-301.

Ashley K, Cordell D, Mavinic D. 2011. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere84, 737–746.

Bai Z H, Li H G, Yang X Y, Zhou B K, Shi X J, Wang B R, Li D C, Shen J B, Chen Q, Qin W, Oenema O, Zhang F S. 2013. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil372, 27–37.

De Bauw P, Smolders E, Verbeeck M, Senthilkumar K, Houben E, Vandamme E. 2021. Micro dose placement of phosphorus induces deep rooting of upland rice. Plant and Soil463, 187–204.

Biassoni M M, Vivas H, Gutiérrez-Boem F H, Salvagiotti F. 2023. Changes in soil phosphorus (P) fractions and P bioavailability after 10 years of continuous P fertilization. Soil and Tillage Research232, 105777.

Bol R, Julich D, Brodlin D, Siemens J, Kaiser K, Dippold M A, Spielvogel S, Zilla T, Mewes D, Von B F, Puhlmann H, Holzmann S, Weiler M, Amelung W, Lang F, Kuzyakov Y, Feger K H, Gottselig N, Klumpp E, Missong A, et al. 2016. Dissolved and colloidal phosphorus fluxes in forest ecosystems - an almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science179, 425–438.

Brownrigg S, Mclaughlin M J, Mcbeath T, Vadakattu G. 2022. Effect of acidifying amendments on P availability in calcareous soils. Nutrient Cycling in Agroecosystems124, 247–262.

Cabral C E A, Cabral C H A, Santos A R M, Carvalho K S, Bonfim-Silva E M, Mattos J S, Alves L B, Bays A P. 2020. Ammonium sulfate enhances the effectiveness of reactive natural phosphate for fertilizing tropical grasses. Tropical Grasslands-Forrajes Tropicales8, 86–92.

Celi L, Barberis E. 2005. Abiotic stabilization of organic phosphorus in the environment. In: Organic Phosphorus in the Environment. Commonwealth Agricultural Bureaux International Publishing, UK. pp. 113–132.

Chen L M, Sun S L, Yao B, Peng Y T, Gao C F, Qin T, Zhou Y Y, Sun C R, Quan W. 2022a. Effects of straw return and straw biochar on soil properties and crop growth: A review. Frontiers in Plant Science13, 986763.

Chen L M, Yang S, Gao J, Chen Ling, Ning H, Hu Z, Lu J, Tan X, Zeng Y J, Pan X, Zeng Y H. 2022b. Long-term straw return with reducing chemical fertilizers application improves soil nitrogen mineralization in a double rice-cropping system. Agronomy12, 1767.

Chen Z M, Wang H Y, Liu X W, Zhao X L, Lu D J, Zhou J M, Li C Z. 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research165, 121–127.

Cheng H Y, Zhu X Z, Sun R X, Niu Y N, Yu Q, Shen Y F, Li S Q. 2020. Effects of different mulching and fertilization on phosphorus transformation in upland farmland. Journal of Environmental Management, 253, 109717.

Ciampitti I A, García F O, Picone L I, Rubio G. 2011. Soil carbon and phosphorus pools in field crop rotations in pampean soils of Argentina. Soil Science Society of America Journal75, 616–625.

Cordell D, White S. 2015. Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system. Food Security7, 337–350.

Demisie W. 2018. Fertilizer microdosing technology in sorghum, millet and maize production at small-scale level in Africa: A review. International Journal of Advanced Scientific Research and Development5, 39–49.

Gichangi E M, Mnkeni P N S, Brookes P C. 2009. Effects of goat manure and inorganic phosphate addition on soil inorganic and microbial biomass phosphorus fractions under laboratory incubation conditions. Soil Science and Plant Nutrition55, 764–771.

Gilbert N. 2009. Environment: The disappearing nutrient. Nature461, 716–718.

Gong H Q, Xiang Y, Wu J C, Luo L C, Chen X H, Jiao X Q, Chen C. 2024. Integrating phosphorus management and cropping technology for sustainable maize production. Journal of Integrative Agriculture4, 1369–1380.

Hinsinger P, Plassard C, Tang C, Jaillard B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil248, 43–59.

IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. 4th edition. International Union of Soil Sciences (IUSS).

Jagdeep S, Brar B S. 2022. Build-up and utilization of phosphorus with continuous fertilization in maize–wheat cropping sequence. Field Crops Research276, 108389.

Jing J, Rui Y, Zhang F, Rengel Z, Shen J. 2010. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Research119, 355–364.

Jing J, Zhang F, Rengel Z, Shen J. 2012. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Research133, 176–185.

Li H Q, Qi S, Li G M, Yu Y M, Chai Z Y, Gao M X, Yang X Y, Feng H, Sun B H. 2023. Techniques to reduce P application rate and improve its efficiency in winter wheat–summer maize system on eum-orthic anthrosols in Guanzhong area. Journal of Plant Nutrition and Fertilizers29, 300–307. (in Chinese)

Li Y P, Wang J, Shao M A. 2022. Earthworm inoculation and straw return decrease the phosphorus adsorption capacity of soils in the loess region China. Journal of Environmental Management312, 114921.

Liu Y B, Pan X B, Li J S. 2015. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: A review. Agronomy for Sustainable Development35, 83–93.

Ma Q, Wang X, Li H B, Li H G, Cheng L Y, Zhang F S, Rengel Z, Shen J B. 2014. Localized application of NH4+-N plus P enhances zinc and iron accumulation in maize via modifying root traits and rhizosphere processes. Field Crops Research164, 107–116.

Naeem A, Deppermann P, Mühling K H. 2023. Ammonium fertilization enhances nutrient uptake, specifically manganese and zinc, and growth of maize in unlimed and limed acidic sandy soil. Nitrogen4, 239–252.

Ouedraogo Y, Taonda J B S, Serme I, Tychon B, Bielders C L. 2022. Drivers of sorghum response to fertilizer microdosing on smallholder farms across Burkina Faso. Field Crops Research288, 108709.

Rose T J, Hardiputra B, Rengel Z. 2010. Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant and Soil326, 159–170.

Rubio G, Cabello M J, Gutiérrez Boem F H, Munaro E. 2008. Estimating available soil phosphorus increases after phosphorus additions in mollisols. Soil Science Society of America Journal72, 1721–1727.

Scholz R W, Wellmer F W. 2013. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? Global Environmental Change23, 11–27.

Sundareshwar P V, Morris J T, Koepfler E K, Fornwalt B. 2003. Phosphorus limitation of coastal ecosystem processes. Science299, 563–565.

Tang X, Ma Y B, Hao X Y, Li X Y, Li J M, Huang S M, Yang X Y. 2009. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil323, 143–151.

Tang X Y, Zhou Y X, Wu R J, Wu K L, Zhao H, Wang W Y, Zhang Y Y, Huang R, Wu Y J, Li B, Wang C. 2024. Long-term straw returning enhances phosphorus uptake by Zea mays L. through mediating microbial biomass phosphorus turnover and root functional traits. Plants13, 2389

Tiecher T, Gomes M V, Ambrosini V G, Amorim M B, Bayer C. 2018. Assessing linkage between soil phosphorus forms in contrasting tillage systems by path analysis. Soil and Tillage Research175, 276–280.

Tiessen H, Stweart J W B, Cole C V. 1984. Pathways of Phosphorus Transformations in Soils of Differing Pedogenesis. Soil Science Society of America Journal48, 853–858.

United Nations. 2024. World population prospects 2024: summary of results. UN DESA /POP/2024/TR/NO. 9. NewYork: United Nations. [2025-4-15]. https://www.un.org/en/desa

Wang F, Li Q H, Lin C, He C M. 2020. Yellow-mud paddy soil productivity and phosphorus fractions under long-term different phosphorus supply levels in southern China. Chinese Journal of Eco-Agriculture28, 960–968. (in Chinese)

Wang J X, Qi Z M, Wang C. 2023. Phosphorus loss management and crop yields: A global meta-analysis. AgricultureEcosystems and Environment357,108683.

Wang R, Pan Z L, Liu Y, Yao Z S, Wang J, Zheng X H, Zhang C, Ju X T, Wei H H, Klaus B. 2022. Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. AgricultureEcosystems and Environment335, 108007.

Wang S D, Kong L J, Long J Y, Su M H, Diao Z H, Chang X Y, Chen D Y, Song G, Shih K. 2018. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies. Chemosphere195, 666–672.

Wang X X, Liu S, Zhang S, Li H, Maimaitiaili B, Feng G, Rengel Z. 2018. Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crops Research217, 75–81.

Wang Y, Marschner P, Zhang F S. 2012. Phosphorus pools and other soil properties in the rhizosphere of wheat and legumes growing in three soils in monoculture or as a mixture of wheat and legume. Plant and Soil354, 283–298.

Weil R R, Brady N C. 2017. Soil phosphorus and potassium. In: The Nature and Properties of Soils. Paerson, Columbia. pp. 643–695

Wu L L, Zhang S Q, Huang S M, Du W, Liu X Q, Wang X H, Lv J L. 2021. Effect of long-term fertilization on phosphorus fraction and availability in fluvo-aquic soil. Chinese Journal of Soil Science52, 379–386. (in Chinese)

Xu C, Shen S S, He Z, Wang N, Zhou B B, Shen M X, Shi L L, Xue L H. 2022. Effects of long-term application of inorganic phosphate fertilizer to soil phosphorus pools in yellow-mud soil paddy fields. Journal of Agro-Environment Science41, 2506–2514. (in Chinese)

Yang C D, Lu S G. 2022. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an ultisol. Science of the Total Environment805, 150325.

Yang M D, Zhao P P, Yu Z Y, Li L Y, Wang H T, Cui B Y, Jia J F. 2022. Optimum phosphorus application rate for maintaining high yield and soil phosphorus fertility under winter wheat summer maize rotation in Shanxi province. Journal of Plant Nutrition and Fertilizers28, 440–449. (in Chinese)

Zhang W N, Zhao Z G, He D, Liu J H, Li H G, Wang E L. 2024. Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils. Journal of Integrative Agriculture3, 1006–1021.

Zhao X M, He L, Zhang Z D, Wang H B, Zhao L P. 2016. Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under different straw return ways after corn harvesting. Soil and Tillage Research156, 148–154.

Zheng W L, Luo B L, Hu X Y. 2020. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production272, 123054.


[1] Hu Xu, Adnan Mustafa, Lu Zhang, Shaomin Huang, Hongjun Gao, Mohammad Tahsin Karimi Nezhad, Nan Sun, Minggang Xu. Comparing carbon sequestration efficiency in chemically separated soil organic carbon fractions under long-term fertilization in three major Chinese croplands[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2841-2856.
[2] Aiwen Li, Jinli Cheng, Dan Chen, Xinyi Chen, Yaruo Mao, Qian Deng, Bin Zhao, Wenjiao Shi, Zemeng Fan, John P. Wilson, Tianfei Dai, Tianxiang Yue, Qiquan Li. Changes in cropland soil inorganic carbon and its relationship with nitrogen fertilization and precipitation over the past 40 years in the Sichuan Basin, China[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4415-4429.
[3] Lingxiao Zhu, Hongchun Sun, Liantao Liu, Ke Zhang, Yongjiang Zhang, Anchang Li, Zhiying Bai, Guiyan Wang, Xiaoqing Liu, Hezhong Dong, Cundong Li. Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer[J]. >Journal of Integrative Agriculture, 2025, 24(1): 36-60.
[4] Jinfeng Wang, Xueyun Yang, Shaomin Huang, Lei Wu, Zejiang Cai, Minggang Xu. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize–wheat cropping systems[J]. >Journal of Integrative Agriculture, 2025, 24(1): 290-305.
[5] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[6] Minghui Cao, Yan Duan, Minghao Li, Caiguo Tang, Wenjie Kan, Jiangye Li, Huilan Zhang, Wenling Zhong, Lifang Wu.

Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil [J]. >Journal of Integrative Agriculture, 2024, 23(2): 698-710.

[7] Ping’an Zhang, Mo Li, Qiang Fu, Vijay P. Singh, Changzheng Du, Dong Liu, Tianxiao Li, Aizheng Yang.

Dynamic regulation of the irrigation–nitrogen–biochar nexus for the synergy of yield, quality, carbon emission and resource use efficiency in tomato [J]. >Journal of Integrative Agriculture, 2024, 23(2): 680-697.

[8] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[9] WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.
[10] ZHANG Xue-min, HUANG Xiang-hua, WANG Jing, XING Ying, LIU Fang, XIANG Jin-zhu, WANG Han-ning, YUE Yong-li, LI Xue-ling. Effects of LPA on the development of sheep in vitro fertilized embryos and attempt to establish sheep embryonic stem cells[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1142-1158.
[11] Koji YAMANE, Miki MARIYAMA, Yoshihiro HIROOKA, Morio IIJIMA. Root pruning is effective in alleviating the inhibition of soybean growth caused by anaerobic stress for a short period[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1035-1044.
[12] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[13] XU Meng-ze, WANG Yu-hong, NIE Cai-e, SONG Gui-pei, XIN Su-ning, LU Yan-li, BAI You-lu, ZHANG Yin-jie, WANG Lei. Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3769-3782.
[14] Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil [J]. >Journal of Integrative Agriculture, 2022, 21(7): 2134-2144.
[15] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
No Suggested Reading articles found!