Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 1142-1158    DOI: 10.1016/j.jia.2022.08.111
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of LPA on the development of sheep in vitro fertilized embryos and attempt to establish sheep embryonic stem cells

ZHANG Xue-min1*, HUANG Xiang-hua2*, WANG Jing1, XING Ying1, LIU Fang1, XIANG Jin-zhu1, WANG Han-ning1, YUE Yong-li1, LI Xue-ling1

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010020, P.R.China

Department of Urology, Inner Mongolia Autonomous Region People's Hospital, Hohhot 010017, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

溶血磷脂酸( Lysophosphatidic acid, LPA)是一种小分子甘油磷脂,在多种动物细胞中具有生长因子和激素样活性。LPA通过结合G蛋白偶联受体,激活下游信号通路,产生促卵母细胞成熟,提高胚胎发育率,促进细胞增殖等生物学效应。绵羊是我国重要的家畜之一,其体外受精效率较其他物种偏低,且目前仍未建立真正的绵羊胚胎干细胞。本研究通过在绵羊体外受精过程及囊胚接种细胞培养过程中添加LPA,以探究LPA对绵羊体外受精以及囊胚接种细胞培养的影响。首先,我们对绵羊的体外受精体系进行了筛选,选取了两种成熟液与两种SOF液进行组合,通过比较不同体系间的成熟率、卵裂率和囊胚率,最终找到最优的体外受精的体系,即IVM Ⅱ and SOF Ⅱ。然后,在绵羊体外受精过程中添加不同浓度的LPA,探讨LPA浓度对绵羊体外受精的影响。结果显示,LPA浓度为0.1 μmol L-1 - 10 μmol L-1之间时,随着LPA浓度的增加,绵羊卵母细胞体外成熟率、囊胚率逐渐上升(P < 0.05),卵裂率无显著变化(P > 0.05),囊胚形态正常;当LPA浓度达到15 μmol L-1时,成熟率、卵裂率、囊胚率均出现显著下降 (P < 0.05),且囊胚形态发生异常,胚胎内细胞团聚集不正常,囊胚内部出现分区,不能发育成为优质的囊胚。另外,随着LPA浓度在0.1 μmol L-1- 10 μmol L-1范围内逐渐增大,LPAR2LPAR4TE相关基因CDX-2和多能性相关基因OCT-4在绵羊早期体外受精胚胎中的mRNA表达量也逐步增加。而15 μmol L-1 LPA处理组中,早期胚胎LPAR2LPAR4CDX-2OCT-4的表达量均显著低于LPA - 10 μmol L-1处理组(P<0.05)。最后,我们将绵羊体外受精囊胚接种在不同培养体系,尝试建立胚胎干细胞。 结果表明,LPA使接种后的囊胚细胞向TSC样细胞生长随着LPA浓度从0 μmol L-1增加到10 μmol L-1, OCT-4CDX-2蛋白免疫荧光强度和mRNA丰度增强(P < 0.05),而15 μmol L-1 LPA显著降低OCT-4CDX-2囊胚接种细胞中的表达(P < 0.05)。同时,10 μmol L-1的LPA处理后,LPAR2LPAR4蛋白表达显著增加。综合上述实验结果,LPA可促进绵羊体外受精早期胚胎发育,并促进囊胚接种细胞向TSC方向生长,为大动物体外受精及胚胎干细胞建系提供参考。



Abstract  

Lysophosphatidic acid (LPA) is a small molecule glycerophospholipid, which regulates multiple downstream signalling pathways through G-protein-coupled receptors to achieve numerous functions on oocyte maturation and embryo development.  In this study, sheep in vitro fertilized embryos were applied to investigate the effects of LPA on early embryos development and embryonic stem cell establishment.  At first, the maturation medium containing estrus female sheep serum and synthetic oviduct fluid (SOF) were optimized for sheep IVF, and then the effects of LPA were investigated.  From 0.1 to 10 μmol L–1, LPA had no significant effect on the cleavage rate (P>0.05), but the maturation rate and blastocyst rate increased dependently with LPA concentration (P<0.05), and the blastocyst morphology was normal.  When the LPA concentration was 15 μmol L–1, the maturation rate, cleavage rate and blastocyst rate decreased significantly (P<0.05), and the blastocyst exhibited abnormal morphology and could not develop into high-quality blastocyst.  Besides, the exogenous LPA increases the expression of LPAR2, LPAR4, TE-related gene CDX-2

and pluripotency-related gene OCT-4 in sheep early IVF embryos with the raise of LPA concentration from 0.1 to 10 μmol

L–1.  The expression of LPAR2, LPAR4, CDX-2 and OCT-4 from the LPA-0.1 μmol L–1 to LPA-10 μmol L–1 groups in early embryos were extremely significant (P<0.05), while the expression of these genes significantly decreased in 15 μmol L–1 LPA-treated embryos compared with LPA-10 μmol L–1 group (P<0.05).  The inner cell mass in 15 μmol L–1 LPA-treated embryos was also disturbed, and the blastocysts formation was abnormal.  Secondly, the sheep IVF blastocysts were applied to establish embryonic stem cells.  The results showed that LPA made the blastocyst inoculated cells grow towards TSC-like cells.  They enhanced the fluorescence intensity and mRNA abundance of OCT-4 and CDX-2 as the concentration increased from 0 to 10 μmol L–1, while 15 μmol L–1 LPA decreased OCT-4 and CDX-2 expression in the derived cells.  The expression of CDX-2 and OCT-4 in the blastocyst inoculated cells of LPA-1 μmol L–1 group and LPA-10 μmol L–1 group extremely significantly increased (P<0.05), but there was significant decrease in LPA-15 μmol L–1 group compared with LPA-10 μmol L–1 group (P<0.05).  Meanwhile, the protein expression of LPAR2 and LPAR4 remarkably increased after treatment of LPA at 10 μmol L–1 concentration.  This study references the IVF embryo production and embryonic stem cell research of domestic animals. 

Keywords:   sheep        in vitro fertilization       LPA       LPARs       embryonic stem cells   
Received: 07 December 2021   Accepted: 21 March 2022
Fund: This work was financially supported by the Science and Technology Major Project of the Inner Mongolia Autonomous Region of China (2020ZD0007), the Major Program of the Inner Mongolia Natural Science Foundation, China (2020ZD10), the National Natural Science Foundation of China (32160172), the Natural Science Foundation of Inner Mongolia Autonomous Region (2020BS03003 and 2020BS03022), the National Transgenic Project of China (2016ZX0801000-002 and 2016ZX08010005-001), and the Science and Technology Major Project of the Inner Mongolia Autonomous Region of China (zdzx2018065).
About author:  ZHANG Xue-min, E-mail: 573248433@qq.com; HUANG Xiang-hua, E-mail: nmgyyhuangxianghua@126.com; #Correspondence LI Xue-ling, Tel: +86-471-3679807, E-mail: lixueling@imu.edu.cn * These authors contributed equally to this study.

Cite this article: 

ZHANG Xue-min, HUANG Xiang-hua, WANG Jing, XING Ying, LIU Fang, XIANG Jin-zhu, WANG Han-ning, YUE Yong-li, LI Xue-ling. 2023. Effects of LPA on the development of sheep in vitro fertilized embryos and attempt to establish sheep embryonic stem cells. Journal of Integrative Agriculture, 22(4): 1142-1158.

Barrera N, Santos Neto P C D, Cuadro F, Bosolasco D, Mulet A P, Crispo M, Menchaca A. 2018. Impact of delipidated estrous sheep serum supplementation on
in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes. PLoS ONE, 13, e0198742.
Bogliotti Y S, Wu J, Vilarino M, Okamura D, Soto D A, Zhong C, Sakurai M, Sampaio R V, Suzuki K, Belmonte J C I, Ross P J. 2018. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 115, 90–95.
Boruszewska D, Torres A C, Kowalczyk-Zieba I, Diniz P, Batista M, Lopes-Da-Costa L, Woclawek-Potocka I. 2014. The effect of lysophosphatidic acid during in vitro maturation of bovine oocytes: Embryonic development and mRNA abundances of genes involved in apoptosis and oocyte competence. Mediators of Inflammation, 2014, 670670.
Bryja V, Bonilla S, Čajánek L, Parish C L, Schwartz C M, Luo Y, Rao M S, Arenas E. 2006. An efficient method for the derivation of mouse embryonic stem cells. Stem Cells, 24, 44–49.
Chazaud C, Yamanaka Y, Pawson T, Rossant J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Developmental Cell, 10, 15–24.
Cheng H Y, Dong A, Panchatcharam M, Mueller P, Yang F, Li Z, Mills G, Chun J, Morris A J, Smyth S S. 2012. Lysophosphatidic acid signaling protects pulmonary vasculature from hypoxia-induced remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 24–32.
Cognié Y, Baril G, Poulin N, Mermillod P. 2003. Current status of embryo technologies in sheep and goat. Theriogenology, 59, 71–88.
Cox J F, Catalán A, Saravia F, Avila J, Santa María A. 1994. In vitro fertilization of cattle and sheep follicular oocytes by goat spermatozoa. Small Ruminant Research, 15, 55–58.
Dauzier L, Thibault C. 1959. New data on the in vitro fertilization of rabbit and ewe ova. Comptes Rendus Hebdomadaires Des Seances de L’academie Des Sciences, 18, 55–56. (in French)
Diogo C C, Camassa J A, Pereira J E, da Costa L M, Filipe V, Couto P A, Geuna S, Maurício A C, Varejão A S. 2017. The use of sheep as a model for studying peripheral nerve regeneration following nerve injury: Review of the literature. Neurological Research, 39, 26–39.
Ehrenwald E, Chisolm G M, Fox P L. 1994. Intact human ceruloplasmin oxidatively modifies low density lipoprotein. Journal of Clinical Investigation, 93, 1493–1501.
Eshtiyaghi M, Deldar H, Pirsaraei Z A, Shohreh B. 2016. Royal jelly may improve the metabolism of glucose and redox state of ovine oocytes matured in vitro and embryonic development following in vitro fertilization. Theriogenology, 86, 10–21.
Evans M J, Kaufman M H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.
García-Álvarez O, Maroto-Morales A, Jiménez-Rabadán P, Ramón M, del Olmo E, Iniesta-Cuerda M, Anel-López L, Fernández-Santos M R, Garde J J, Soler A J. 2015. Effect of different media additives on capacitation of frozen–thawed ram spermatozoa as a potential replacement for estrous sheep serum. Theriogenology, 84, 48–55.
Hama K, Aoki J, Inoue A, Endo T, Amano T, Motoki R, Kanai M, Ye X, Chun J, Matsuki N, Suzuki H, Shibasaki M, Arai H. 2007. Embryo spacing and implantation timing are differentially regulated by LPA3-mediated lysophosphatidic acid signaling in mice. Biology of Reproduction, 77, 54–59.
Han X, Xiang J, Li C, Wang J, Wang C, Zhang Y, Li Z, Lu Z, Yue Y, Li X. 2020. MLL1 combined with GSK3 and MAP2K inhibition improves the development of in vitro-fertilized embryos. Theriogenology, 146, 58–70.
Hinokio K, Yamano S, Nakagawa K, Irahara M. 2002. Lysophosphatidic acid stimulates nuclear and cytoplasmic maturation of golden hamster immature oocytes in vitro via cumulus cells. Life Sciences, 70, 59–67.
Huang X, Han X, Uyunbilig B, Zhang M, Duo S, Zuo Y, Zhao Y, Yun T, Tai D, Wang C, Li J, Li X, Li R. 2014. Establishment of bovine trophoblast stem-like cells from in vitro-produced blastocyst-stage embryos using two inhibitors. Stem Cells and Development, 23, 1–14.
Huneau D, Crozet N,  Ahmed-Ali M. 1994. Estrous sheep serum as a potent agent for ovine: effect on cholesterol efflux from spermatozoa and the acrosome reaction. Theriogenology, 42, 17–28.
Hwang S U, Kim K J, Kim E, Yoon J D, Park K M, Jin M, Han Y, Kim M, Lee G, Hyun S H. 2018. Lysophosphatidic acid increases in vitro maturation efficiency via uPA–uPAR signaling pathway in cumulus cells. Theriogenology, 113, 197–207.
Johnson M H, McConnell J M L. 2004. Lineage allocation and cell polarity during mouse embryogenesis. Seminars in Cell and Developmental Biology, 15, 83–97.
Khandoga A L, Fujiwara Y, Goyal P, Pandey D, Tsukahara R, Bolen A, Guo H, Wilke N, Liu J, Valentine W J, Durgam G G, Miller D D, Jiang G, Prestwich G D, Tigyi G, Siess W. 2008. Lysophosphatidic acid-induced platelet shape change revealed through LPA1–5 receptor-selective probes and albumin. Platelets, 19, 15–27.
Khurana N K, Niemann H. 2000. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biology of Reproduction, 62, 47–56.
Kuwahara E, Yamamoto J, Yano Y, Omura M, Kuwahara A, Irahara M, Tokumura A. 2014. Lysophosphatidic acid stimulates hyaluronan production by mouse cumulus–oocyte complexes. Reproductive Medicine and Biology, 13, 95–102.
Li G, Mosier P D, Fang X, Zhang Y. 2009. Toward the three-dimensional structure and lysophosphatidic acid binding characteristics of the LPA4/p2y9/GPR23 receptor: A homology modeling study. Journal of Molecular Graphics and Modelling, 28, 70–79.
Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson R E, Schulze E N, Song H, Hsieh C L, Pera M F, Ying Q L. 2008. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 135, 1299–1310.
Li Y, Wu S, Yu Y, Zhang H, Wei R, Lv J, Cai M, Yang X, Zhang Y, Liu Z. 2020. Derivation of porcine extraembryonic endoderm-like cells from blastocysts. Cell Proliferation, 53, 1–10.
Lin M E, Herr D R, Chun J. 2010. Lysophosphatidic acid (LPA) receptors: Signaling properties and disease relevance. Prostaglandins and Other Lipid Mediators, 91, 30–38.
Liszewska E, Reinaud P, Billon-Denis E, Dubois O, Robin P, Charpigny G. 2015. Lysophosphatidic acid signaling during embryo development in sheep: Involvement in prostaglandin synthesis. Reproduction Development, 150, 22–34. 
Ma Y, Yang W, Ren P, Li X, Jin J, Dai Y, Pan Y, Jiang L, Fan H, Zhang Y, Zhang S. 2021. Lysophosphatidic acid improves oocyte quality during IVM by activating the ERK1/2 pathway in cumulus cells and oocytes. Molecular Human Reproduction, 27, 1–14.
Madeja Z E, Hryniewicz K, Orsztynowicz M, Pawlak P, Perkowska A. 2015. WNT/β-catenin signalling affects cell lineage and pluripotency specific gene expression in bovine blastocysts-prospects for bovine ESC derivation. Stem Cells and Development, 24, 1–52.
Martin G R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 34–38.
Masciangelo R, Hossay C, Chiti M C, Manavella D D, Amorim C A, Donnez J, Dolmans M M. 2020. Role of the PI3K and Hippo pathways in follicle activation after grafting of human ovarian tissue. Journal of Assisted Reproduction and Genetics, 37, 101–108.
Noguchi K, Herr D, Mutoh T, Chun J. 2009. Lysophosphatidic acid (LPA) and its receptors. Current Opinion in Pharmacology, 9, 15–23.
Schulze C, Smales C, Rubin L L, Staddon J M. 1997. Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. Journal of Neurochemistry, 68, 991–1000.
Sergejew N, Baibekow F. 1992. In vitro maturation and in vitro fertilization of bovine oocytes. Reproduction in Domestic Animals, 27, 44–45.
Shorgan B. 1990. In Vitro Fertilization of Goat Aand Sheep Eggs. Inner Mongolia People’s Press, Hohhot. (in Chiense) 
Tervit H R, Whittingham D G, Rowson L E. 1972. Successful culture in vitro of sheep and cattle ova. Journal of Reproduction and Fertility, 30, 93–97.
Torres A C, Boruszewska D, Batista M, Kowalczyk-Zieba I, Diniz P, Sinderewicz E, Saulnier-Blache J S, Woclawek-Potocka I, Lopes-Da-Costa L. 2014. Lysophosphatidic acid signaling in late cleavage and blastocyst stage bovine embryos. Mediators of Inflammation, 2014, 1–12.
Turner A S. 2007. Experiences with sheep as an animal model for shoulder surgery: Strengths and shortcomings. Journal of Shoulder and Elbow Surgery, 16, 58–63.
Vilarino M, Soto D A, Bogliotti Y S, Yu L, Zhang Y, Wang C, Paulson E, Zhong C, Jin M, Belmonte J C I, Wu J, Ross P J. 2016. Derivation of sheep embryonic stem cells under optimized conditions. Reproduction, 160, 761–772.
Wang C, Han X, Zhou Z, Uyunbilig B, Huang X, Li R, Li X. 2019. Wnt3a activates the WNT-YAP/TAZ pathway to sustain CDX2 expression in bovine trophoblast stem cells. DNA and Cell Biology, 38, 10–22.
Wang S, Liu Y. 1998. A protocol for in vitro maturation and fertilization of sheep oocytes. Small Ruminant Research, 29, 83–88.
Woclawek-Potocka I, Kowalczyk-Zieba I, Skarzynski D J. 2010. Lysophosphatidic acid action during early pregnancy in the cow: In vivo and in vitro studies. Journal of Reproduction and Development, 56, 11–20.
Xing Y, Ganji S H, Noh J W, Kamanna V S. 2004. Cell density-dependent expression of EDG family receptors and mesangial cell proliferation: Role in lysophosphatidic acid-mediated cell growth. American Journal of Physiology (Renal Physiology), 287, 50–57.
Xu Z, Robitaille A M, Berndt J D, Davidson K C, Fischer K A, Mathieu J, Potter J C, Ruohola-Baker H, Moon R T. 2016. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 113, 82–90.
Yang D, Yang W, Zhang Q, Hu Y, Bao L, Damirin A. 2013. Migration of gastric cancer cells in response to lysophosphatidic acid is mediated by LPA receptor 2. Oncology Letters, 5, 1048–1052.
Yi Y J, Lee I K, Lee S M, Yun B S. 2016. An antioxidant davallialactone from Phellinus baumii enhances sperm penetration on in vitro fertilization of pigs. Mycobiology, 44, 54–57.
Yu B, Tol H T A, Oei C H Y, Stout T A E, Roelen B A J. 2021. Lysophosphatidic acidaccelerates bovine in vitro-produced blastocyst formation through the Hippo/yap pathway. International Journal of Molecular Sciences, 22, 1–12.
Zhang J Y, Jiang Y, Lin T, Kang J W, Lee J E, Jin D. 2015. Lysophosphatidic acid improves porcine oocyte maturation and embryo development in vitro. Molecular Reproduction and Development, 82, 66–77.
Zhao Y, Lin J, Wang L, Chen B, Zhou C, Chen T, Guo M, He S, Zhang N, Liu C, Liu M, Huang J. 2011. Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. Journal of Experimental Zoology (Part A: Ecological Genetics and Physiology), 315, 39–48.
Zhu J, Moawad A R, Wang C Y, Li H F, Ren J Y, Dai Y F. 2018. Advances in in vitro production of sheep embryos. International Journal of Veterinary Science and Medicine, 6, 25–26.
[1] WANG Ying, LI Xin, LI Zheng, DU Man-ting, ZHU Jie, ZHANG She-qi, ZHANG De-quan. Phosphorylation of sarcoplasmic and myofibrillar proteins in three ovine muscles during postmortem ageing[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1643-1651.
[2] PEI Cai-xia, LIU Qiang, DONG Chang-sheng, LI Hong-quan, JIANG Jun-bing , GAO Wen-jun. Microbial Community in the Forestomachs of Alpacas (Lama pacos) and Sheep (Ovis aries)[J]. >Journal of Integrative Agriculture, 2013, 12(2): 314-318.
No Suggested Reading articles found!