Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Changes in cropland soil inorganic carbon and its relationship with nitrogen fertilization and precipitation over the past 40 years in the Sichuan Basin, China

Aiwen Li1, Jinli Cheng1, Dan Chen1, Xinyi Chen1, Yaruo Mao1, Qian Deng1, Bin Zhao2, Wenjiao Shi3, 4, Zemeng Fan3, 4, John P. Wilson3, 4, 5, Tianfei Dai6, Tianxiang Yue3, 4, Qiquan Li1#

1 College of Resources, Sichuan Agricultural University, Chengdu 611130, China

2 College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China

3 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

5 Spatial Sciences Institute, University of Southern California, Los Angeles, CA 90089-0374, USA 

6 Sichuan Green Food Development Center, Chengdu 610041, China

 Highlights 

l Machine learning models were developed to fill the missing SIC of soil samples.

l Cropland soils experienced an overall decrease in SIC during the 1980s–2010s.

l Precipitation was the dominant driver and controlled the effect of N fertilization.

l The magnitude of SIC decline varied parabolically with N fertilizer rates.

l The high N fertilizer rate did not cause SIC loss in areas with rainfall<950 mm.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

(N)施用和降驱动的土壤酸化对农业生态系统中土壤无机碳(SIC)长期保持稳定的传统概念提出了挑战。但SIC变化与和氮肥施用关系需进一步明确。本研究以四川盆地1980年代(1980-1985)2010年代(2017-2019)两个时期分别采集的4000多个土壤样为基础,建立机器学习模型来填补土壤样缺失SIC通过配对生成两个时期3697对土壤样分析四川盆地40年来耕地SIC的变特征,并探讨了其与降雨量和氮肥施用量的关系。结果表明,四川盆地耕地SIC总体上下降15.73%SIC变化随土壤初始pH值和初始SIC含量的变化而变化,并与土壤pH变化量呈指数关系,表明土壤碳酸盐在提供酸缓冲能力方面的作用土壤pH变化而改变SIC下降幅度与氮肥施用量呈抛物线关系,低施氮量有助于减少SIC损失量,而施氮量超过250 kg ha-1 yr-1时,SIC损失量增加。SIC随降量呈正弦变化,年均降雨量950 mm为控制SIC增加或减少的阈值。施氮并未改变SOC变化与年均的正弦关系,在年均降雨量<950 mm的地区,高施氮量不会引起SIC损失,而在低施氮量的地区,高降量也会导致SIC较大损失。这些结果表明,SIC变化由和施氮共同驱动,到与初始pH值和初始SIC相关的酸缓冲机制控制,其中降是主要驱动因素。上述结果说明需要开展更多的区域土壤观测和深入研究SIC变化及其机制,以准确估算区域SIC变化。



Abstract  

Widespread soil acidification driven by nitrogen (N) fertilization and precipitation challenges the conventional notion of the long-term stability of soil inorganic carbon (SIC) in agroecosystems. However, the changes in SIC with precipitation and N fertilization remain ambiguous. Based on 4,000+ soil samples collected in the 1980s and 2010s and by developing machine learning models to fill the missing SIC of soil samples, this study generated 3,697 paired soil samples between the two periods and then investigated the cropland SIC change and explored its relationship with precipitation and N fertilization across the Sichuan Basin, China. The results showed an overall SIC loss, with a decline of the mean SIC by 15.73%. SIC change varied with initial soil pH and initial SIC and exhibited an exponential relationship with soil pH change, indicating the changing role of carbonates in providing acid-buffering capacity. There was a parabolical relationship between the magnitude of SIC decline and N fertilizer rates, and low N fertilizer rates contributed to a reduction in SIC loss, while SIC loss was promoted by N fertilization occurred when N fertilizing rates exceeded 250 kg ha-1 yr-1. The change in SIC showed a sinusoidal variation with precipitation, with 950 mm being the threshold controlling whether SIC increased or decreased. Meanwhile, N fertilization did not alter the sinusoidal relationship between SIC change and precipitation. In areas with rainfall <950 mm, the high N fertilizer rate did not cause SIC loss, while higher precipitation could also cause larger SIC loss in areas with lower N fertilizer rates. These results suggest that SIC dynamics are jointly driven by precipitation and N fertilization and are controlled by acid-buffering mechanisms associated with initial pH and SIC, with precipitation being the predominant driver. These findings emphasize the need for more regional soil observations and in-depth studies of SIC change and its mechanisms for accurately estimating SIC change.

Keywords:  soil inorganic carbon change       nitrogen fertilization       precipitation       Sichuan Basin  
Online: 01 May 2025  
Fund: 

This work was supported by the National Natural Science Foundation of China (42330707 and 41930647), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (72221002), and the Science and Technology Plan of Sichuan Province, China (2022NSFSC0104).

About author:  Aiwen Li, E-mail: ivy_laww@163.com; #Qiquan Li, E-mail: liqq@lreis.ac.cn

Cite this article: 

Aiwen Li, Jinli Cheng, Dan Chen, Xinyi Chen, Yaruo Mao, Qian Deng, Bin Zhao, Wenjiao Shi, Zemeng Fan, John P. Wilson, Tianfei Dai, Tianxiang Yue, Qiquan Li. 2025. Changes in cropland soil inorganic carbon and its relationship with nitrogen fertilization and precipitation over the past 40 years in the Sichuan Basin, China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.039

An H, Wu X Z, Zhang Y R, Tang Z S. 2019. Effects of land-use change on soil inorganic carbon: A meta-analysis. Geoderma, 353, 273–282.

Baker L, Ellison D. 2008. Optimisation of pedotransfer functions using an artificial neural network ensemble method. Geoderma, 144, 212–224.

Batjes N H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

Beerling D J, Kantzas E P, Lomas M R, Wade P, Eufrasio R M, Renforth P, Banwart S A. 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583, 242–248.

Benedet L, Acuña-Guzman S F, Faria W M, Silva S H G, Mancini M, Teixeir A F S, Pierangeli L M P, Júnior F W A, Gomide L R, Júnior A L P, de Souza I A, de Menezes M D, Marques J J, Guilherme L R G, Curi N. 2021. Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms. Catena, 197, 105003.

Ben-Asher M, Haviv I, Roering J J, Crouvi O. 2019. The potential influence of dust flux and chemical weathering on hillslope morphology: Convex soil-mantled carbonate hillslopes in the Eastern Mediterranean. Geomorphology, 341, 203215.

Bossio D A, Cook-Patton S C, Ellis P W, Fargione J, Sanderman J, Smith P, Wood S, Zomer R J, von Unger M, Emmer I M, Griscom B W. 2020. The role of soil carbon in natural climate solutions. Nature Sustainability, 3, 391–398.

Bughio M A, Wang P, Meng F, Qing C, Kuzyakov Y, Wang X, Junejo S. 2016. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma, 262, 12–19.

Cai J P, Luo W T, Liu H Y, Feng X, Zhang Y Y, Wang R Z, Xu Z W, Zhang Y G, Jiang Y. 2017. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmospheric Environment, 170, 312–318.

Chen B, Feng W, Jing X, Wang Y. 2023. Dryland agricultural expansion leads to lower content and higher variability of soil inorganic carbon in topsoil. Agriculture, Ecosystems and Environment, 356, 108620.

Dang C R, Kong F L, Li Y, Jiang Z X, Xi M. 2022. Soil inorganic carbon dynamic change mediated by anthropogenic activities: An integrated study using meta-analysis and random forest model. Science of the Total Environment, 835, 155463.

Dey A, Dwivedi B S, Bhattacharyya R, Datta S P, Meena M C, Jat R K, Singh R G. 2020. Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo-Gangetic Plains. Soil Use and Management, 36, 429–438.

Du C J, Gao Y H. 2020. Opposite patterns of soil organic and inorganic carbon along a climate gradient in the alpine steppe of northern Tibetan Plateau. Catena, 186, 104366.

Ferdush J, Paul V. 2021. A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena, 204, 105434.

Filippi P, Cattle S R, Bishop T F A, Odeh I O A, Pringle M J. 2018. Digital soil monitoring of top- and sub-soil pH with bivariate linear mixed models. Geoderma, 322, 149–162.

Filippi P, Cattle S R, Pringle M J, Bishop T F A. 2020. A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon. Geoderma, 371, 114382.

Goulding K. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage, 32, 390–399.

Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Zhang F S. 2010. Significant acidification in major Chinese croplands. Science, 327, 1008–1010.

Han X Y, Gao G Y, Chang R Y, Li Z S, Ma Y, Wang S, Wang C, Lü Y H, Fu B J. 2018. Changes in soil organic and inorganic carbon stocks in deep profiles following cropland abandonment along a precipitation gradient across the Loess Plateau of China. Agriculture, Ecosystems & Environment, 258, 1–13.

Hao T, Zhu Q, Zeng M, Yu Z, Wang X, Li J, Zhang X, Yang Y, Zhang Z. 2019. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant and Soil, 434, 167–184.

Huang Y Y, Song X D, Wang Y P, Canadell J G, Luo Y Q, Ciais P, Chen A P, Hong S B, Wang Y G, Tao F, Li W, Xu Y M, Mirzaeitalarposhti R, Elbasiouny H, Savin I, Shchepashchenko D, Viscarra Rossel R A, Goll D S, Chang J F, et al. 2024. Size, distribution, and vulnerability of the global soil inorganic carbon. Science, 384, 233–239.

Jiang J, Wang Y P, Yu M X, Li K, Shao Y J, Yan J H. 2016. Responses of soil buffering capacity to acid treatment in three typical subtropical forests. Science of the Total Environment, 563, 1068–1077.

Jobbágy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

Khalidy R, Arnaud E, Santos R M. 2022. Natural and human-induced factors on the accumulation and migration of pedogenic carbonate in soil: A review. Land, 11, 1448.

Kim J H, Jobbagy E G, Richter D D, Trumbore S E, Jackson R B. 2020. Agricultural acceleration of soil carbonate weathering. Global Change Biology, 26, 5988–6002.

Lai L, Wang J, Tian Y, Zhao X, Jiang L, Chen X, Gao Y, Wang S, Zheng Y. 2013. Organic matter and water addition enhance soil respiration in an arid region. PLoS ONE, 8, e77659.

van Leeuwen C C E, Mulder V L, Batjes N H, Heuvelink G B M. 2024. Effect of measurement error in wet chemistry soil data on the calibration and model performance of pedotransfer functions. Geoderma, 442, 116762.

Li A W, Li C J, Zhang Y Y, Deng Q, Fang H Y, Zhao B, Ran M, Song L Y, Xue J L, Tao Q, Huang R, Li Y D, Zhou W, Wang J T, Wilson J P, Li Q Q. 2023. The driving factors and buffering mechanism regulating cropland soil acidification across the Sichuan Basin of China. Catena, 220, 106688.

LA W, LW D, Song L Y, Ran M, Chen D, Cheng J L, QH R, Guo C H, LQ Q. 2025. Methods of filling in bulk density gaps of cropland topsoil in the Sichuan Basin. Acta Pedologica Sinica, 62, 4053. (in Chinese)

Li A W, Zhang Y Y, Li C J, Deng Q, Fang H Y, Dai T F, Chen C P, Wang J T, Fan Z M, Shi W J, Zhao B, Tao Q, Huang R, Li Y D, Zhou W, Wu D Y, Yuan D G, Wilson J P, Li Q Q. 2022. Divergent responses of cropland soil organic carbon to warming across the Sichuan Basin of China. Science of the Total Environment, 851, 158323.

Li Q Q, Li A W, Dai T F, Fan Z M, Luo Y L, Li S, Yuan D G, Zhao B, Tao Q, Wang C Q, Li B, Gao X S, Li Y D, Li H X, Wilson J P. 2020a. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Global Change Biology, 26, 4134–4146.

Li Q Q, Li A W, Yu X L, Dai T F, Peng Y Y, Yuan D G, Zhao B, Tao Q, Wang C Q, Li B, Gao X S, Li Y D, Wu D Y, Xu Q. 2020b. Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. Science of the Total Environment, 698, 134320.

Li Q Q, Li S, Xiao Y, Zhao B, Wang C Q, Li B, Gao X S, Li Y D, Bai G C, Wang Y D, Yuan D G. 2019. Soil acidification and its influencing factors in the purple hilly area of southwest China from 1981 to 2012. Catena, 175, 278–285.

Li Q Q, Yue T X, Wang C Q, Zhang W J, Yu Y, Li B, Yang J, Bai G C. 2013. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena, 104, 210–218.

Li Q Q, Zhang H, Jiang X Y, Luo Y L, Wang C Q, Yue T X, Li B, Gao X S. 2017. Spatially distributed modeling of soil organic carbon across China with improved accuracy. Journal of Advances in Modeling Earth Systems, 9, 1167–1185.

Lu T, Wang X, Xu M, Yu Z, Luo Y, Smith P. 2020. Dynamics of pedogenic carbonate in the cropland of the North China plain: Influences of intensive cropping and salinization. Agriculture, Ecosystems & Environment, 292, 106820.

Lugato E, Lavallee J M, Perego A, Demyan M S, Dendooven L, Vanderborght J, Maas A, Orsini S, Parizot P, Gianelle D. 2021. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 14, 295–300.

Melillo J M, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101–105.

Moinet G Y K, Smith P, Olesen J E, Peruzzi E, Bodini A, Bellocchi G, Smith J U, Soussana J F. 2023. Carbon for soils not soils for carbon. Global Change Biology, 29, 2384–2398.

Nottingham A T, Meir P, Velasquez E, Turner B L. 2020. Soil carbon loss by experimental warming in a tropical forest. Nature, 584, 234–237.

Raheb A, Heidari A, Mahmoodi S. 2017. Organic and inorganic carbon storage in soils along an arid to dry sub-humid climosequence in northwest of Iran. Catena, 153, 66–74.

Raza S, Miao N, Wang P Z, Ju X T, Chen Z J, Zhou J B, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology, 26, 3738–3751.

Raza S, Zamanian K, Ullah S, Kuzyakov Y, Virto I, Zhou J B. 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. Journal of Cleaner Production, 315, 128036.

Rengel Z. 2011. Soil pH, soil health and climate change. In: Soil Health and Climate Change. Springer, Berlin, Heidelberg, pp. 69–85.

Rowley M C, Grand S, Adatte T, Verrecchia E P. 2020. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma, 361, 114065.

Schindlbacher A, Beck K, Holzheu S, Borken W. 2019. Inorganic carbon leaching from a warmed and irrigated carbonate forest soil. Frontiers in Forests and Global Change, 2, 1–13.

Schlesinger W H. 1985. The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta, 49, 57–66.

Sequeira C H, Wills S A, Seybold C A, West L T. 2014. Predicting soil bulk density for incomplete databases. Geoderma, 213, 64–73.

Shanhun F, Almond P, Clough T, Smith C. 2012. Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology and Biochemistry, 53, 99–111.

Shao S S, Su B W, Zhang Y L, Gao C, Zhang M, Zhang H, Yang L. 2022. Sample design optimization for soil mapping using improved artificial neural networks and simulated annealing. Geoderma413, 115749.

Shi X, Zhao Y, Zhang L, Wu W, Meng F. 2017. Effects of different agricultural practices on soil carbon pool in north China plain. Environmental Science, 38, 301–308.

Sinha E, Michalak A M, Balaji V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357, 405–408.

Song X D, Yang F, Wu H Y, Zhang J, Li D C, Liu F, Zhao Y G, Yang J L, Ju B, Cai C F, Huang B, Long H Y, Lu Y, Sui Y Y, Wang Q B, Wu K N, Zhang F R, Zhang M K, Shi Z, Ma W Z, et al. 2022. Significant loss of soil inorganic carbon at the continental scale. National Science Review, 9, nwab120.

Stanbery C, Ghahremani Z, Huber D P, Will R, Benner S G, Glenn N, Hanif T, Spaete L, Terhaar D, Lohse K A, Seyfried M, Freutel W, Pierce J L. 2023. Controls on the presence and storage of soil inorganic carbon in a semi-arid watershed. Catena, 225, 106980.

Stewart B W, Capo R C, Chadwick O A. 2001. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochimica et Cosmochimica Acta, 65, 1087–1099.

Tamir G, Shenker M, Heller H, Bloom P, Fine P, Bar-Tal A. 2011. Can soil carbonate dissolution lead to overestimation of soil respiration? Soil Science Society of America Journal, 75, 1414–1422.

Tao J J, Raza S, Zhao M Z, Cui J J, Wang P Z, Sui Y Y, Zamanian K, Kuzyakov Y, Xu M G, Chen Z C, Zhou J B. 2022. Vulnerability and driving factors of soil inorganic carbon stocks in Chinese croplands. Science of the Total Environment, 825, 154087.

Tomar U, Baishya R. 2020. Moisture regime influence on soil carbon stock and carbon sequestration rates in semi-arid forests of the National Capital Region, India. Journal of Forestry Research, 31, 2323–2332.

Wang J P, Wang X J, Zhang J, Li Y, Chen J, Zhang Z. 2015. Soil organic and inorganic carbon and stable carbon isotopes in the Yanqi Basin of Northwestern China. European Journal of Soil Science, 66, 95–103.

Wang S N, Li R P, Wu Y J, Wang W J. 2023. Estimation of surface soil moisture by combining a structural equation model and an artificial neural network (SEM-ANN). Science of the Total Environment, 876, 162558.

Wang Y G, Li Y, Ye X H, Chu Y, Wang X P. 2010. Profile storage of organic/inorganic carbon in soil: From forest to desert. Science of the Total Environment, 408, 1925–1931.

Wang Z W, Huang L M, Shao M A. 2024. Development of pedotransfer functions for predicting hydraulic parameters of van Genuchten model by incorporating environmental variables on the Qinghai-Tibet Plateau. Soil and Tillage Research, 236, 105952.

Wu H B, Guo Z T, Gao Q, Peng C H. 2009. Distribution of soil inorganic carbon storage and its changes due to agricultural land use activity in China. Agriculture, Ecosystems & Environment, 129, 413–421.

Yan X Y, Cai Z C, Wang S W, Smith P. 2011. Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 17, 1487–1496.

Yang Y, Fang J, Ji C, Ma W, Mohammat A, Wang S, Wang S, Datta A, Robinson D, Smith P. 2012. Widespread decreases in topsoil inorganic carbon stocks across China's grasslands during 1980s-2000s. Global Change Biology, 18, 3672–3680.

You M Y, Han X Z, Hu N, Du S L, Doane T A, Li L J. 2020. Profile storage and vertical distribution (0–150 cm) of soil inorganic carbon in croplands in northeast China. Catena, 185, 104302.

Yu P, Li Q, Jia H, Sun Y, Chen L, Zhang X. 2014. Effect of cultivation on dynamics of organic and inorganic carbon stocks in Songnen Plain. Agronomy Journal, 106, 1574–1582.

Zamanian K, Kuzyakov Y. 2019. Contribution of soil inorganic carbon to atmospheric CO2: More important than previously thought. Global Change Biology, 25, e1–e3.

Zamanian K, Pustovoytov K, Kuzyakov Y. 2016. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17.

Zamanian K, Zarebanadkouki M, Kuzyakov Y. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology, 24, 2810–2817.

Zamanian K, Zhou J, Kuzyakov Y. 2021. Soil carbonates: The unaccounted irrecoverable carbon source. Geoderma, 384, 114817.

Zang H, Blagodatskaya E, Wen Y, Xu X, Dyckmans J, Kuzyakov Y. 2018. Carbon sequestration and turnover in soil under the energy crop Miscanthus: Repeated 13C natural abundance approach and literature synthesis. Global Change Biology Bioenergy, 10, 262–271.

Zhang F, Wang X, Guo T, Li W, Zhang L. 2015. Soil organic and inorganic carbon in the loess profiles of Lanzhou area: Implications of deep soils. Catena, 126, 68–74.

Zhang Y, Zhang S, Wang R, Cai J, Zhang Y, Li H, Jiang Y. 2016. Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science and Plant Nutrition, 62, 432–439.

Zhao C L, Shao M A, Jia X X, Nasir M, Zhang C C. 2016. Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China. Catena, 143, 1–6.

Zhao Y C, Wang M Y, Hu S J, Zhang X D, Ouyang Z, Zhang G L, Huang B, Zhao S W, Wu J S, Xie D T, Zhu B, Yu D S, Pan X Z, Xu S X. 2018. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America, 115, 4045–4050. 

[1] YANG Wen-jia, LI Yu-lin, LIU Wei-jian, WANG Shi-wen, YIN Li-na, DENG Xi-ping. Agronomic management practices in dryland wheat result in variations in precipitation use efficiency due to their differential impacts on the steps in the precipitation use process[J]. >Journal of Integrative Agriculture, 2023, 22(1): 92-107.
[2] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
[3] CHU Xiao-lei, LU Zhong, WEI Dan, LEI Guo-ping . Effects of land use/cover change (LUCC) on the spatiotemporal variability of precipitation and temperature in the Songnen Plain, China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 235-248.
[4] WANG Rui, WANG Ying, HU Ya-xian, DANG Ting-hui, GUO Sheng-li. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3003-3011.
[5] QI Dong-liang, HU Tian-tian, SONG Xue. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial rootzone irrigation[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2792-2806.
[6] ZHOU Li-li, LIAO Shu-hua, WANG Zhi-min, WANG Pu, ZHANG Ying-hua, YAN Hai-jun, GAO Zhen, SHEN Si, LIANG Xiao-gui, WANG Jia-hui, ZHOU Shun-li. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1181-1193.
[7] XUE Nai-wen, XUE Jian-fu, YANG Zhen-ping, SUN Min, REN Ai-xia, GAO Zhi-qiang. Effects of film mulching regime on soil water status and grain yield of rain-fed winter wheat on the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2612-2622.
[8] SUN Cheng-ming, ZHONG Xiao-chun, CHEN Chen, GU Ting, CHEN Wen. Evaluating the grassland net primary productivity of southern China from 2000 to 2011 using a new climate productivity model[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1638-1644.
[9] B A Stewart, LIANG Wei-li. Strategies for increasing the capture, storage, and utilization of precipitation in semiarid regions[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1500-1510.
[10] MING Bo, GUO Yin-qiao, TAO Hong-bin, LIU Guang-zhou, LI Shao-kun, WANG Pu. SPEIPM-based research on drought impact on maize yield in North China Plain[J]. >Journal of Integrative Agriculture, 2015, 14(4): 660-669.
[11] CONG Ri-huan, ZHANG Zhi, LU Jian-wei, LI Xiao-kun, REN Tao, WANG Wei-ni. Evaluation of nitrogen requirement and efficiency of rice in the region of Yangtze River Valley based on large-scale field experiments[J]. >Journal of Integrative Agriculture, 2015, 14(10): 2090-2098.
[12] CHEN Chao, ZHOU Guang-sheng , ZHOU Li. Impacts of Climate Change on Rice Yield in China From 1961 to 2010 Based on Provincial Data[J]. >Journal of Integrative Agriculture, 2014, 13(7): 1555-1564.
[13] YANG Li , WANG Li-gang, LI Hu, QIU Jian-jun , LIU Hui-ying. Impacts of Fertilization Alternatives and Crop Straw Incorporation on N2O Emissions from a Spring Maize Field in Northeastern China[J]. >Journal of Integrative Agriculture, 2014, 13(4): 881-892.
[14] LI Jie, JIANG Sha, WANG Bin, JIANG Wei-wei, TANG Yan-hong, DU Ming-yuan , GU Song. Evapotranspiration and Its Energy Exchange in Alpine Meadow Ecosystem on the Qinghai-Tibetan Plateau[J]. >Journal of Integrative Agriculture, 2013, 12(8): 1396-1401.
[15] XIE Wen-ping , YANG Jing-song. Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary[J]. >Journal of Integrative Agriculture, 2013, 12(4): 711-722.
No Suggested Reading articles found!