Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (12): 3769-3782    DOI: 10.1016/j.jia.2023.05.030
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
XU Meng-ze1, WANG Yu-hong1, NIE Cai-e1, SONG Gui-pei1, XIN Su-ning1, LU Yan-li1, BAI You-lu1, ZHANG Yin-jie2#, WANG Lei1#
1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

磷(P)是一种不可再生资源,是植物生长的关键营养元素,对作物产量提高起着重要作用。磷肥过量施用在农业生产中很普遍,这不仅浪费了磷资源,还造成了磷的积累和地下水污染。为了获得产量和磷利用效率(PUE我们假设农业系统的表观磷平衡可以作为确定磷投入阈值的关键指标。因此我们进行了长达12年的定位田间试验,包括6个施磷处理,量分别为04590135180225 kg P2O5 ha–1,以明确作物产量、PUE和土壤Olsen-P平衡的反应并优化投入。结果表明,肥施用量超过某一水平时,年产量不再增加当周年磷肥施用量为90–135 kg P2O5 ha–1时可以实现产量和PUE。当磷平衡阈值2.15–4.45 kg P ha–1时可以实现最佳产量和最小环境风险。基于磷平衡阈值投入为95.7–101 kg P2O5 ha–1施磷量在此阈值内时可以协同提高产量与PUE90.0–94.9%此外,本研究发现磷投入-产出平衡框架的建立有助于评估土壤Olsen-P在未来变化,其中土壤磷平衡每增加100 kg P ha–1,有效磷含量上升4.07 mg kg–1平衡可以作为农业生产管理的一个重要指标,为限制过剩和制定更高产、高效和环保的肥管理策略提供有力参考。



Abstract  

Phosphorus (P) is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.  Excessive P fertilizer application is widespread in agricultural production, which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.  Here, we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency (PUE).  A 12-year field experiment with P fertilization rates of 0, 45, 90, 135, 180, and 225 kg P2O5 ha–1 was conducted to determine the crop yield, PUE, and soil Olsen-P value response to P balance, and to optimize the P input.  Annual yield stagnation occurred when the P fertilizer application exceeded a certain level, and high yield and PUE levels were achieved with annual P fertilizer application rates of 90–135 kg P2O5 ha–1.  A critical P balance range of 2.15–4.45 kg P ha–1 was recommended to achieve optimum yield with minimal environmental risk.  The critical P input range estimated from the P balance was 95.7–101 kg P2O5 ha–1, which improved relative yield (>90%) and PUE (90.0–94.9%).  In addition, the P input–output balance helps in assessing future changes in Olsen-P values, which increased by 4.07 mg kg–1 of P for every 100 kg of P surplus.  Overall, the P balance can be used as a critical indicator for P management in agriculture, providing a robust reference for limiting P excess and developing a more productive, efficient and environmentally friendly P fertilizer management strategy.

Keywords:  yield of winter wheat and summer maize        phosphorus balance        phosphorus use efficiency        Olsen-P        critical phosphorus application rate  
Received: 15 December 2022   Accepted: 20 March 2023
Fund: This study was funded by the National Key Research and Development Program of China (2021YFD1700900).
About author:  XU Meng-ze, E-mail: xumengze1013@163.com; #Correspondence ZHANG Yin-jie, Tel: +86-371-68555200, E-mail: zzhangyinjie@126.com; WANG Lei, Tel: +86-10-82105030, E-mail: wanglei02@caas.cn

Cite this article: 

XU Meng-ze, WANG Yu-hong, NIE Cai-e, SONG Gui-pei, XIN Su-ning, LU Yan-li, BAI You-lu, ZHANG Yin-jie, WANG Lei. 2023. Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China. Journal of Integrative Agriculture, 22(12): 3769-3782.

Amery F, Vandecasteele B, D’Hose T, Nawara S, Elsen A, Odeurs W, Vandendriessche H, Arlotti D, McGrath S P, Cougnon M, Smolders E. 2021. Dynamics of soil phosphorus measured by ammonium lactate extraction as a function of the soil phosphorus balance and soil properties. Geoderma385, 114855.

Bai Z, Li H, Yang X, Zhou B, Shi X, Wang B, Li D, Shen J, Chen Q, Qin W, Oenema O, Zhang F. 2013. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil372, 1–2.

Cao N, Chen X, Cui Z, Zhang F. 2012. Change in soil available phosphorus in relation to the phosphorus budget in China. Nutrient Cycling in Agroecosystems94, 161–170.

Chen M, Chen J, Sun F. 2008. Agricultural phosphorus flow and its environmental impacts in China. Science of the Total Environment405, 140–152.

Childers D L, Corman J, Edwards M, Elser J J. 2011. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. BioScience61, 117–124.

Deng Y, Chen K, Teng W, Zhan A, Tong Y, Feng G, Cui Z, Zhang F, Chen X. 2014. Is the inherent potential of maize roots efficient for soil phosphorus acquisition? PLoS ONE9, e90287.

Dhillon J, Torres G, Driver E, Figueiredo B, Raun W R. 2017. World phosphorus use efficiency in cereal crops. Agronomy Journal109, 1670–1677.

Ding W, Xu X, Zhang J, Huang S, He P, Zhou W. 2021. Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China. Environmental Pollution290, 118091.

EUNEP (EU Nitrogen Expert Panel). 2016. Nitrogen Use Efficiency (NUE- Guidance Document for Assessing NUE at Farm Level. Wageningen University, Netherlands.

Fan B, Wang H, Zhai L, Li J, Fenton O, Daly K, Lei Q, Wu S, Liu H. 2022. Leached phosphorus apportionment and future management strategies across the main soil areas and cropping system types in northern China. Science of the Total Environment805, 150441.

Hart M R, Quin B F, Nguyen M L. 2004. Phosphorus runoff from agricultural land and direct fertilizer effects: A review. Journal of Environmental Quality33, 1954–1972.

Hesketh N, Brookes P C. 2000. Development of an indicator for risk of phosphorus leaching. Journal of Environmental Quality29, 105–110.

Huang S, Yang W, Ding W, Jia L, Jiang L, Liu Y, Xu X, Yang Y, He P, Yang J. 2021. Estimation of nitrogen supply for summer maize production through a long-term field trial in China. Agronomy11, 1358.

Hunter M C, Smith R G, Schipanski M E, Atwood L W, Mortensen D A. 2017. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience67, 386–391.

Jagdeep S, Brar B S. 2022. Build-up and utilization of phosphorus with continues fertilization in maize–wheat cropping sequence. Field Crops Research276, 108389.

Jiang W, Liu X, Wang X, Yang L, Yin Y. 2019. Improving phosphorus use efficiency and optimizing phosphorus application rates for maize in the Northeast Plain of China for sustainable agriculture. Sustainability11, 4799.

Johnston A E, Poulton P R, Fixen P E, Curtin D. 2014. Phosphorus: Its efficient use in agriculture. Advances in Agronomy123, 177–228.

Jordan-Meille L, Rubaek G H, Ehlert P A I, Genot V, Hofman G, Goulding K, Recknagel J, Provolo G, Barraclough P. 2012. An overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use and Management28, 419–435.

Kalkhajeh Y K, Huang B, Hu W, Holm P E, Hansen H C B. 2017. Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils. Chemosphere172, 316–324.

Khan A, Lu G, Ayaz M, Zhang H, Wang R, Lv F, Yang X, Sun B, Zhang S. 2018. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. AgricultureEcosystems & Environment256, 1–11.

Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X, Jiang R, Zhang F. 2011. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil349, 157–167.

Li M, Hu T, Cui X, Luo L, Chen S. 2021. Study on fertilization effect on winter wheat–summer corn yield in Guanzhong Plain based on meta analysis. Soil and Fertilizer Sciences in China, (6), 300–311. (in Chinese)

Liu J, Zhang N, Zhang S. 2020. Study on transfer of phosphorus and threshold values of available phosphorus in fluvo-aquic soil under long-term fertilization. Transactions of the Chinese Society of Agricultural Engineering36, 8–16. (in Chinese)

Lu R K. 2000. Methods of Agricultural Chemical Analysis of Soil. China Agricultural Science and Technology Press, China. (in Chinese)

Ma J, Liu Y, He W, He P, Haygarth P M, Surridge B W J, Lei Q, Zhou W. 2018. The long-term soil phosphorus balance across Chinese arable land. Soil Use and Management34, 306–315.

Mayer N, Kaltschmitt M. 2022. Closing the phosphorus cycle: Current P balance and future prospects in Germany. Journal of Cleaner Production347, 131272.

McLellan E L, Cassman K G, Eagle A J, Woodbury P B, Sela S, Tonitto C, Marjerison R D, van Es H M. 2018. The nitrogen balancing act: Tracking the environmental performance of food production. Bioscience68, 194–203.

Medinski T, Freese D, Reitz T. 2018. Changes in soil phosphorus balance and phosphorus-use efficiency under long-term fertilization conducted on agriculturally used Chernozem in Germany. Canadian Journal of Soil Science98, 650–662.

van Middelkoop J C, van der Salm C, Ehlert P A I, de Boer I J M, Oenema O. 2016. Does balanced phosphorus fertilisation sustain high herbage yields and phosphorus contents in alternately grazed and mown pastures? Nutrient Cycling in Agroecosystems106, 93–111.

NBSC (National Bureau of Statistics of China). 2020. China Statistical Yearbook. China Statistics Press, China. (in Chinese)

O’Donnell C, Egan A, Harrington J, Barnett D, Forrestal P, Power N. 2021. An overview on deficit and requirements of the Irish national soil phosphorus balance. Science of the Total Environment785, 147251.

Pedersen I F, Rubæk G H, Nyord T, Sørensen P. 2020. Row-injected cattle slurry can replace mineral P starter fertiliser and reduce P surpluses without compromising final yields of silage maize. European Journal of Agronomy116, 126057.

Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens I A. 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications4, 2934.

Powers S M, Bruulsema T W, Burt T P, Chan N I, Elser J J, Haygarth P M, Howden N J K, Jarvie H P, Lyu Y, Peterson H M, Sharpley A N, Shen J, Worrall F, Zhang F. 2016. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 9, 353–356.

Qaswar M, Huang J, Ahmed W, Li D, Liu S, Zhang L, Cai A, Liu L, Xu Y, Gao J, Zhang H. 2020. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil and Tillage Research198, 104569.

Qin X, Guo S, Zhai L, Pan J, Khoshnevisan B, Wu S, Wang H, Yang B, Ji J, Liu H. 2020. How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil. Environmental Pollution266, 115304.

Roberts T L, Johnston A E. 2015. Phosphorus use efficiency and management in agriculture. ResourcesConservation and Recycling105, 275–281.

Rowe H, Withers P J A, Baas P, Chan N I, Doody D, Holiman J, Jacobs B, Li H, MacDonald G K, McDowell R, Sharpley A N, Shen J, Taheri W, Wallenstein M, Weintraub M N. 2015. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems104, 393–412.

Sato S, Solomon D, Hyland C, Ketterings Q M, Lehmann J. 2005. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environmental Science & Technology39, 7485–7491.

Sattari S Z, Bouwman A F, Giller K E, van Ittersum M K. 2012. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proceedings of the National Academy of Sciences of the United States of America109, 6348–6353.

Schröder J J, Aarts H F M, ten Berge H F M, van Keulen H, Neeteson J J. 2003. An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy20, 33–44.

Shaw A N, Cleveland C C. 2020. The effects of temperature on soil phosphorus availability and phosphatase enzyme activities: a cross-ecosystem study from the tropics to the Arctic. Biogeochemistry151, 113–125.

Shen P, Xu M, Zhang H, Yang X, Huang S, Zhang S, He X. 2014. Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Catena118, 20–27.

Singh J, Brar B S, Sekhon B S, Mavi M S, Singh G, Kaur G. 2016. Impact of long-term phosphorous fertilization on Olsen-P and grain yields in maize–wheat cropping sequence. Nutrient Cycling in Agroecosystems106, 157–168.

Svanback A, McCrackin M L, Swaney D P, Linefur H, Gustafsson B G, Howarth R W, Humborg C. 2019. Reducing agricultural nutrient surpluses in a large catchment - Links to livestock density. Science of the Total Environment648, 1549–1559.

Syers J K, Johnston A E, Curtin D. 2008. Efficiency of soil and fertilizer phosphorus use. Reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer and Plant Nutrition Bulletin18, 107.

Tang X, Li J, Ma Y, Hao X, Li X. 2008. Phosphorus efficiency in long-term (15 years) wheat–maize cropping systems with various soil and climate conditions. Field Crops Research108, 231–237.

Thomas I A, Buckley C, Kelly E, Dillon E, Lynch J, Moran B, Hennessy T, Murphy P N C. 2020. Establishing nationally representative benchmarks of farm-gate nitrogen and phosphorus balances and use efficiencies on Irish farms to encourage improvements. Science of the Total Environment, 720, 137245.

Torrent J, Schwertmann U, Barron V. 1992. Fast and slow phosphate sorption by goethite-rich natural materials. Clays and Clay Minerals40, 14–21.

Vandermoere S, Van De Sande T, Tavernier G, Lauwers L, Goovaerts E, Sleutel S, De Neve S. 2021. Soil phosphorus (P) mining in agriculture - Impacts on P availability, crop yields and soil organic carbon stocks. AgricultureEcosystems & Environment322, 107660.

Volf M R, Rosolem C A. 2020. Soil P diffusion and availability modified by controlled-release P fertilizers. Journal of Soil Science and Plant Nutrition21, 162–172.

Wang Y, Chen Y F, Wu W H. 2021. Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology63, 34–52.

Weiss T M, Leiser W L, Reineke A J, Li D, Liu W, Hahn V, Wurschum T. 2021. Optimizing the P balance: How do modern maize hybrids react to different starter fertilizers? PLoS ONE16, e0250496.

Wu Q, Zhou W, Chen D, Cai A, Ao J, Huang Z. 2020. Optimizing soil and fertilizer phosphorus management according to the yield response and phosphorus use efficiency of sugarcane in southern China. Journal of Soil Science and Plant Nutrition20, 1655–1664.

Xi B, Zhai L M, Liu J, Liu S, Wang H Y, Luo C Y, Ren T Z, Liu H B. 2016. Long-term phosphorus accumulation and agronomic and environmtal critical phosphorus levels in Haplic Luvisol soil, northern China. Journal of Integrative Agriculture15, 200–208.

Yang M, Yang H. 2021. Utilization of soil residual phosphorus and internal reuse of phosphorus by crops. PeerJ9, e11704.

Yang X, Fang S. 2015. Practices, perceptions, and implications of fertilizer use in East-Central China. AMBIO44, 647–652.

Zhang K K, Huang S M, Guo D D, Song X, Yue K, Zhang S Q, Huang C C. 2020. Study on transfer of phosphorus and threshold values of available phosphorus in fluvo-aquic soil under long term fertilization. Soil and Fertilizer Sciences in China, (5), 64–69. (in Chinese)

Zhang WW, Zhan X Y, Zhang S X, Ibrahima K H M, Xu M G. 2019. Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil. Journal of Integrative Agriculture18, 667–676.

Zhang Y, Gao W, Luan H, Tang J, Li R, Li M, Zhang H, Huang S. 2021. Long-term organic substitution management affects soil phosphorus speciation and reduces leaching in greenhouse vegetable production. Journal of Cleaner Production327,129464.

Zicker T, von Tucher S, Kavka M, Eichler-Löbermann B. 2018. Soil test phosphorus as affected by phosphorus budgets in two long-term field experiments in Germany. Field Crops Research218, 158–170.

Zou T, Zhang X, Davidson E A. 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature611, 81–87.

No related articles found!
No Suggested Reading articles found!