Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 302-312    DOI: 10.1016/j.jia.2025.03.014
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops

Shending Chen1, 2, 5, Ahmed S. Elrys1, 3, 4, Siwen Du2, Wenyan Yang1, Zucong Cai2, 4, Jinbo Zhang1, 4#, Lei Meng1#, Christoph Müller4, 5, 6

1 School of Breeding and Multiplication/Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China

2 School of Geography, Nanjing Normal University, Nanjing 210023, China

3 Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt

4 Liebig Centre for Agroecology and Climate Impact Research, Justus-Liebig University Giessen, Giessen 35392, Germany

5 Institute of Plant Ecology, Justus-Liebig University Giessen, Giessen 35392, Germany

6 School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin DO4V1W8, Ireland

 Highlights 
The characteristics of gross N transformations regulate soil N dynamics.  
Soil N dynamics matching with crop N preference affect crop N uptake.
Heterotrophic nitrification enhances N uptake in upland systems.
Autotrophic nitrification constrains N uptake in rice systems.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
水稻氮利用效率普遍低于旱地作物。土壤氮动态和作物氮形态偏好的差异可能是导致这一现象的重要因素。然而,目前对稻田和旱地土壤氮初级转化速率的差异及其对作物氮吸收的影响仍然知之甚少。我们分析了全球136项研究中的2044个农田土壤氮初级转化速率的观测结果,以期阐明全球尺度上稻田和旱地土壤氮动态特点及其对水稻和旱地作物氮吸收的影响。研究结果表明,水稻土氮初级矿化和自养硝化速率明显低于旱地土壤,而硝酸盐异化还原为铵速率高于旱地。长期淹水环境和水稻土全氮含量较低是导致上述差异的主要因素。土壤氮初级矿化和自养硝化速率调控土壤可利用氮供应量以及铵态氮与硝态氮的比例。水稻铵态氮吸收速率明显高于旱地作物,而旱地作物硝态氮吸收速率则超过水稻的两倍。水稻土铵态氮供应能力较低以及自养硝化作用对铵态氮的竞争及硝化-反硝化氮损失是水稻氮利用率低的重要原因。异养硝化作用有利于提升旱地作物氮吸收。这些结果表明,农田土壤氮动态与作物氮吸收偏好的契合程度对于提高作物生产力并减少活性氮污染具有重要意义。




Abstract  

Nitrogen use efficiency in rice is lower than in upland crops, likely due to differences in soil nitrogen dynamics and crop nitrogen preferences.  However, the specific nitrogen dynamics in paddy and upland systems and their impact on crop nitrogen uptake remain poorly understood.  The N dynamics and impact on crop N uptake determine the downstream environmental pollution from nitrogen fertilizer.  To address this poor understanding, we analyzed 2,044 observations of gross nitrogen transformation rates in soils from 136 studies to examine nitrogen dynamics in both systems and their effects on nitrogen uptake in rice and upland crops.  Our findings revealed that nitrogen mineralization and autotrophic nitrification rates are lower in paddies than in upland soil, while dissimilatory nitrate reduction to ammonium is higher in paddies, these differences being driven by flooding and lower total nitrogen content in paddies.  Rice exhibited higher ammonium uptake, while upland crops had over twice the nitrate uptake.  Autotrophic nitrification stimulated by pH reduced rice nitrogen uptake, while heterotrophic nitrification enhanced nitrogen uptake of upland crops.  Autotrophic nitrification played a key role in regulating the ammonium-to-nitrate ratio in soils, which further affected the balance of plant nitrogen uptake.  These results highlight the need to align soil nitrogen dynamics with crop nitrogen preferences to maximize plant maximize productivity and reduce reactive nitrogen pollution.

Keywords:  Paddy soil       upland soil       plant nitrogen uptake       N mineralization       nitrification       15N tracing study  
Received: 03 December 2024   Accepted: 13 February 2025 Online: 22 March 2025  
Fund: 

This work was funded by the National Key Research and Development Program of China (2024YFD1501602), and the National Natural Science Foundation of China (42407437).  The study was also conducted as part of the Coordinated Research Project D1.50.16, implemented by the Soil and Water Management and Crop Nutrition Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, Vienna, Austria. 

About author:  #Correspondence Jinbo Zhang, Mobile: +86-13805188487, E-mail: zhangjinbo@hainanu.edu.cn; Lei Meng, Mobile: +86-13707546016, E-mail: menglei@hainanu.edu.cn

Cite this article: 

Shending Chen, Ahmed S. Elrys, Siwen Du, Wenyan Yang, Zucong Cai, Jinbo Zhang, Lei Meng, Christoph Müller. 2026. Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops. Journal of Integrative Agriculture, 25(1): 302-312.

Akiyama H, Yan X Y, Yagi K. 2010. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Global Change Biology16, 1837–1846.

Armstrong W, Beckett P M. 1987. Internal aeration and the development of stelar anoxia in submerged roots - a multishelled mathematical-model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytologist105, 221–245.

Asano M, Wagai R. 2014. Evidence of aggregate hierarchy at micro-to submicron scales in an allophanic Andisol. Geoderma216, 62–74.

Bates D, Maechler M, Bolker B M, Walker S C. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software67, 1–48.

Bengtsson G, Bengtson P, Månsson K F. 2003. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biology & Biochemistry35, 143–154.

Booth M S, Stark J M, Rastetter E. 2005. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecological Monographs75, 139–157.

Britto D T, Kronzucker H J. 2002. NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology159, 567–584.

Britto D T, Kronzucker H J. 2013. Ecological significance and complexity of N-source preference in plants. Annals of Botany112, 957–963.

Cameron K C, Di H J, Moir J L. 2013. Nitrogen losses from the soil/plant system: A review. Annals of Applied Biology162, 145–173.

Chen J T, Li J H, Li W F, Li P, Zhu R, Zhong Y X, Zhang W F, Li T Y. 2024. The optimal ammonia-nitrate ratio for various crops: A meta-analysis. Field Crops Research307, 109240.

Chen M T L, Schievano A, Bosco S, Montero-Castaño A, Tamburini G, Pérez-Soba M, Makowski D. 2023. Evidence map of the benefits of enhanced-efficiency fertilisers for the environment, nutrient use efficiency, soil fertility, and crop production. Environmental Research Letters18, 043005.

Chen S, Elrys A S, Yang W, Du S, He M, Cai Z, Zhang J, Müller C. 2024. Soil recalcitrant but not labile organic nitrogen mineralization contributes to microbial nitrogen immobilization and plant nitrogen uptake. Global Change Biology30, e17290.

Cheng Y, Elrys A S, Merwad A R M, Zhang H, Chen Z, Zhang J, Cai Z, Müller C. 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium. Environmental Science & Technology56, 3791–3800.

Cheng Y, Wang J, Wang J Y, Chang S X, Wang S Q. 2017. The quality and quantity of exogenous organic carbon input control microbial NO3 immobilization: A meta-analysis. Soil Biology & Biochemistry115, 357–363.

Choi W J, Ro H M. 2003. Differences in isotopic fractionation of nitrogen in water-saturated and unsaturated soils. Soil Biology & Biochemistry35, 483–486.

Coskun D, Britto D T, Shi W, Kronzucker H J. 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants3, 17074.

Elrys A S, Abo El-Maati M F, Dan X, Wen Y, Mou J, Abdelghany A E, Uwiragiye Y, Shuirong T, Yanzheng W, Meng L, Zhang J, Müller C. 2023a. Aridity creates global thresholds in soil nitrogen retention and availability. Global Change Biology, e17003.

Elrys A S, Ali A, Zhang H, Cheng Y, Zhang J, Cai Z, Müller C, Chang S X. 2021a. Patterns and drivers of global gross nitrogen mineralization in soils. Global Change Biology27, 5950–5962.

Elrys A S, Uwiragiye Y, Zhang Y, Abdel-Fattah M K, Chen Z, Zhang H, Meng L, Wang J, Zhu T, Cheng Y, Zhang J, Cai Z, Chang S X, Müller C. 2023b. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nature Food4, 109–121.

Elrys A S, Wang J, Meng L, Zhu Q, El-Sawy M M, Chen Z, Tu X, El-Saadony M T, Zhang Y, Zhang J, Cai Z, Müller C, Cheng Y. 2023c. Integrative knowledge-based nitrogen management practices can provide positive effects on ecosystem nitrogen retention. Nature Food4, 1075–1089.

Elrys A S, Wang J, Metwally M A S, Cheng Y, Zhang J, Cai Z, Chang S X, Müller C. 2021b. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Global Change Biology27, 6512–6524.

Falkengren-Grerup U, Lakkenborg-Kristensen H. 1994. Importance of ammonium and nitrate to the performance of herb-layer species from deciduous forests in southern Sweden. Environmental and Experimental Botany34, 31–38.

FAO (Food and Agriculture Organization of the United Nations). 2022. FAOSTAT production data. [2024-10-2]. https://www.fao.org/faostat/en/#data

Gao W, Fan C, Zhang W, Li N, Liu H, Chen M. 2023. Heterotrophic nitrification of organic nitrogen in soils: Process, regulation, and ecological significance. Biology and Fertility of Soils59, 261–274.

Geisseler D, Horwath W R, Joergensen R G, Ludwig B. 2010. Pathways of nitrogen utilization by soil microorganisms - A review. Soil Biology & Biochemistry42, 2058–2067.

Gigon A, Rorison I H. 1972. The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. Journal of Ecology60, 93–102.

Gu B J, Zhang X M, Lam S K, Yu Y L, van Grinsven H J M, Zhang S H, Wang X X, Bodirsky B L, Wang S T, Duan J K, Ren C C, Bouwman L, de Vries W, Xu J M, Sutton M A, Chen D L. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature613, 77–84.

He M Q, Chen S D, Yang W Y, Dai S Y, Zhu Q Y, Wang W J, Du S W, Meng L, Cai Z C, Zhang J B, Müller C. 2025. Priming effects of maize growth and photosynthetic substrate supply on soil N mineralization-immobilization turnover. Plant and Soil508, 469–482.

He M Q, Dai S Y, Zhu Q Y, Wang W J, Chen S D, Meng L, Dan X Q, Huang X Q, Cai Z C, Zhang J B, Müller C. 2024. Understanding the stimulation of microbial oxidation of organic N to nitrate in plant soil systems. Soil Biology & Biochemistry190, 109312.

He X, Chi Q, Cai Z, Cheng Y, Zhang J, Müller C. 2020. 15N tracing studies including plant N uptake processes provide new insights on gross N transformations in soil-plant systems. Soil Biology & Biochemistry141, 107666.

He X, Chi Q, Meng L, Zhao C, He M, Dan X, Huang X, Zhao J, Cai Z, Zhang J, Müller C. 2022. Plants with nitrate preference can regulate nitrification to meet their nitrate demand. Soil Biology & Biochemistry165, 108516.

Houlton B Z, Sigman D M, Schuur E A G, Hedin L O. 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proceedings of the National Academy of Sciences of the United States of America104, 8902–8906.

Hu Y, Schraml M, von Tucher S, Li F, Schmidhalter U. 2014. Influence of nitrification inhibitors on yields of arable crops: A meta-analysis of recent studies in Germany. International Journal of Plant Production8, 33–50.

Huygens D, Boeckx P, Templer P H, Paulino L, Van Cleemput O, Oyarzun C, Müller C, Godoy R. 2008. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nature Geoscience1, 543–548.

Ishii S, Ikeda S, Minamisawa K, Senoo K. 2011. Nitrogen cycling in rice paddy environments: Past achievements and future challenges. Microbes and Environments26, 282–292.

Jackson L E, Burger M, Cavagnaro T R. 2008. Roots nitrogen transformations, and ecosystem services. Annual Review of Plant Biology59, 341–363.

Jiao S, Chen W, Wang J, Du N, Li Q, Wei G. 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome6, 146.

Kong D, Zhang X, Yu Q, Jin Y, Jiang P, Wu S, Liu S, Zou J. 2024. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms. Journal of Integrative Agriculture23, 3159–3173.

Kirk G J D, Kronzucker H J. 2005. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modelling study. Annals of Botany96, 639–646.

Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Koelbl A, Schloter M. 2010. Biogeochemistry of paddy soils. Geoderma157, 1–14.

Kuznetsova A, Brockhoff P B, Christensen R H B. 2017. lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software82, 1–26.

Lai C, Hu Q, Sun J, Li C, Chen X, Chen B, Xue X, Chen J, Hou F, Xu G, Du W, Stevens C, Peng F, Zhou J. 2024. Varying soil moisture and pH with alpine meadow degradation affect nitrogen preference of dominant species. Biology and Fertility of Soils60, 1041–1053.

Lam P, Kuypers M M M. 2011. Microbial nitrogen cycling processes in oxygen minimum zones. Annual Review of Marine Science3, 317–345.

Leifeld J, von Luetzow M. 2014. Chemical and microbial activation energies of soil organic matter decomposition. Biology and Fertility of Soils50, 147–153.

Li Y L, Fan X R, Shen Q R. 2008. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell and Environment31, 73–85.

Li Z, Tian D, Wang B, Wang J, Wang S, Chen H Y H, Xu X, Wang C, He N, Niu S. 2019. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology25, 1078–1088.

Li Z L, Zeng Z Q, Tian D S, Wang J S, Fu Z, Zhang F Y, Zhang R Y, Chen W N, Luo Y Q, Niu S L. 2020. Global patterns and controlling factors of soil nitrification rate. Global Change Biology26, 4147–4157.

Li Z X, Peng Y Z J, Gao H. 2020. Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA–2Na/Fe(II) ratio and pH control. Bioresource Technology305, 123083.

Liesack W, Schnell S, Revsbech N P. 2000. Microbiology of flooded rice paddies. FEMS Microbiology Reviews24, 625–645.

Lim S S, Kwak J H, Lee K S, Chang S X, Yoon K S, Kim H Y, Choi W J. 2015. Soil and plant nitrogen pools in paddy and upland ecosystems have contrasting δ15N. Biology and Fertility of Soils51, 231–239.

Linquist B A, Adviento-Borbe M A, Pittelkow C M, van Kessel C, van Groenigen K J. 2012. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research135, 10–21.

Linquist B A, Liu L, van Kessel C, van Groenigen K J. 2013. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Research154, 246–254.

Liu S, Chi Q, Cheng Y, Zhu B, Li W, Zhang X, Huang Y, Müller C, Cai Z, Zhang J. 2019. Importance of matching soil N transformations, crop N form preference, and climate to enhance crop yield and reducing N loss. Science of the Total Environment657, 1265–1273.

Rabot E, Wiesmeier M, Schlueter S, Vogel H J. 2018. Soil structure as an indicator of soil functions: A review. Geoderma314, 122–137.

Rice K C, Herman J S. 2012. Acidification of Earth: An assessment across mechanisms and scales. Applied Geochemistry27, 1–14.

Shan J, Zhao X, Sheng R, Xia Y, Ti C, Quan X, Wang S, Wei W, Yan X. 2016. Dissimilatory nitrate reduction processes in typical chinese paddy soils: Rates, relative contributions, and influencing factors. Environmental Science & Technology50, 9972–9980.

Song L, Li Z L, Niu S L. 2021. Global soil gross nitrogen transformation under increasing nitrogen deposition. Global Biogeochemical Cycles35, e2020GB006711.

Subbarao G V, Kishii M, Bozal-Leorri A, Ortiz-Monasterio I, Gao X, Ibba M I, Karwat H, Gonzalez-Moro M B, Gonzalez-Murua C, Yoshihashi T, Tobita S, Kommerell V, Braun H J, Iwanaga M. 2021. Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution. Proceedings of the National Academy of Sciences of the United States of America118, e2106595118.

Sun L, Lu Y, Yu F, Kronzucker H J, Shi W. 2016. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist212, 646–656.

Tang Q, Wang J, Cao M M, Chen Z X, Tu X S, Elrys A S, Jing H, Wang X Z, Cai Z C, Mueller C, Daniell T J, Yan X Y, Cheng Y. 2024. Awakening soil microbial utilization of nitrate by carbon regulation to lower nitrogen pollution. Agriculture Ecosystems & Environment362, 108848.

Totsche K U, Amelung W, Gerzabek M H, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N, Koegel-Knabner I. 2018. Microaggregates in soils. Journal of Plant Nutrition and Soil Science181, 104–136.

Vinutha H P, Poornima B, Sagar B M. 2017. Detection of outliers using interquartile range technique from intrusion dataset. In: Proceedings of 6th International Conference on Frontiers of Intelligent ComputingTheory and Applications (FICTA). Kalinga Institute of Industrial Technology University, School of Computer Applications, Bhubaneswar, India. pp. 511–518.

Wang A, Li X, Hao X, Luo X, Chen W, Huang Q. 2022. Ammonia level influences the assembly of dissimilatory nitrate reduction to ammonia bacterial community in soils under different heavy metal remediation treatments. Science of the Total Environment838, 156393.

Wang L, Macko S A. 2011. Constrained preferences in nitrogen uptake across plant species and environments. Plant Cell and Environment34, 525–534.

Wei L, Ge T, Zhu Z, Luo Y, Yang Y, Xiao M, Yan Z, Li Y, Wu J, Kuzyakov Y. 2021. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma398, 115121.

Weil R R, Brady N C. 2017. The Nature and Properties of Soils. 15th ed. Pearson Education, USA.

von Wiren N, Gazzarrini S, Frommer W B. 1997. Regulation of mineral nitrogen uptake in plants. Plant and Soil196, 191–199.

Wrage-Mönnig N, Horn M A, Well R, Müller C, Velthof G, Oenema O. 2018. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biology & Biochemistry123, A3-A16.

Xu C M, Chen L P, Chen S, Chu G, Wang D Y, Zhang X F. 2020. Rhizosphere aeration improves nitrogen transformation in soil, and nitrogen absorption and accumulation in rice plants. Rice Science27, 162–174.

Yang Y J, Zhang J B, Cai Z C. 2016. Nitrification activities and N mineralization in paddy soils are insensitive to oxygen concentration. Acta Agriculturae Scandinavica (Section B: Soil and Plant Science), 66, 272–281.

Yue H, Yue W J, Jiao S, Kim H, Lee Y H, Wei G H, Song W N, Shu D T. 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome11, 70.

Zhang J, Cai Z, Müller C. 2018. Terrestrial N cycling associated with climate and plant-specific N preferences: A review. European Journal of Soil Science69, 488–501.

Zhang J, Wang J, Müller C, Cai Z. 2016. Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics. Soil Biology & Biochemistry103, 63–70.

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhao X, Wang Y, Cai S, Ladha J K, Castellano M J, Xia L, Xie Y, Xiong Z, Gu B, Xing G, Yan X. 2024. Legacy nitrogen fertilizer in a rice–wheat cropping system flows to crops more than the environment. Science Bulletin69, 1212–1216.

Zimmermann M, Leifeld J, Conen F, Bird M I, Meir P. 2012. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? Biogeochemistry107, 423–436.

[1] Lei Wu, Jing Hu, Muhammad Shaaban, Jun Wang, Kailou Liu, Minggang Xu, Wenju Zhang. Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization[J]. >Journal of Integrative Agriculture, 2026, 25(1): 262-272.
[2] Hanqiang Lü, Aizhong Yu, Qiang Chai, Feng Wang, Yulong Wang, Pengfei Wang, Yongpan Shang, Xuehui Yang. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3403-3417.
[3] Chuandong Tan, Yadan Du, Xiaobo Gu, Wenquan Niu, Jinbo Zhang, Christoph Müller, Xuesong Cao. Aerated irrigation increases tomato production by improving soil nitrogen availability[J]. >Journal of Integrative Agriculture, 2025, 24(1): 322-338.
[4] Song Wan, Yongxin Lin, Hangwei Hu, Milin Deng, Jianbo Fan, Jizheng He. Excessive manure application stimulates nitrogen cycling but only weakly promotes crop yields in an acidic Ultisol: Results from a 20-year field experiment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2434-2445.
[5] GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2233-2247.
[6] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[7] LI Hao-ruo, SONG Xiao-tong, Lars R. BAKKEN, JU Xiao-tang. Reduction of N2O emissions by DMPP depends on interaction of nitrogen source (digestate vs. urea) with soil properties[J]. >Journal of Integrative Agriculture, 2023, 22(1): 251-264.
[8] Cyrine REZGUI, Isabelle TRINSOUTROT-GATTIN, Marie BENOIT, Karine LAVAL, Wassila RIAH-ANGLET. Linking changes in the soil microbial community to C and N dynamics during crop residue decomposition[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3039-3059.
[9] ZHANG Jun-hua, HUANG Jing, Sajid HUSSAIN, ZHU Lian-feng, CAO Xiao-chuang, ZHU Chun-quan, JIN Qian-yu, ZHANG Hui. Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2781-2796.
[10] YUAN Hong-zhao, ZHU Zhen-ke, WEI Xiao-meng, LIU Shou-long, PENG Pei-qin, Anna Gunina, SHEN Jian-lin, Yakov Kuzyakov, GE Ti-da, WU Jin-shui, WANG Jiu-rong. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1474-1485.
[11] GAO Song-juan, GAO Ju-sheng, CAO Wei-dong, ZOU Chun-qin, HUANG Jing, BAI Jin-shun, DOU Fu-gen. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1852-1860.
[12] ZHENG Han, CHEN Li, LI Ning, LIU Bin, MENG Nan, WANG Meng, CHEN Shi-bao . Toxicity threshold of lead (Pb) to nitrifying microorganisms in soils determined by substrate-induced nitrification assay and prediction model[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1832-1840.
[13] GAO Song-juan CAO Wei-dong, GAO Ju-sheng, HUANG Jing, BAI Jin-shun, ZENG Nao-hua, CHANG Dan-na, SHIMIZU Katsuyoshi . Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China[J]. >Journal of Integrative Agriculture, 2017, 16(04): 959-966.
[14] CHEN Zhong-du, ZHANG Hai-lin, S Batsile Dikgwatlhe, XUE Jian-fu, QIU Kang-cheng, TANG Hai-ming, CHEN fu. Soil carbon storage and stratification under different tillage/ residue-management practices in double rice cropping system[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1551-1560.
[15] HUANG Ping, ZHANG Jia-bao, XIN Xiu-li, ZHU An-ning, ZHANG Cong-zhi, MA Dong-hao, ZHU Qiang-gen, YANG Shan, WU Sheng-jun. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain[J]. >Journal of Integrative Agriculture, 2015, 14(1): 148-157.
No Suggested Reading articles found!