Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (1): 273-289    DOI: 10.1016/j.jia.2025.06.012
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Partial organic fertilizer substitution and water-saving irrigation can reduce greenhouse gas emissions in aromatic rice paddy by regulating soil microorganisms while increasing yield and aroma

Ligong Peng1, 2, 3*, Sicheng Deng1, 2, 3*, Wentao Yi1, 2, 3, Yizhu Wu1, 2, 3, Yingying Zhang1, 2, 3, Xiangbin Yao1, 2, 3, Pipeng Xing1, 2, 3, Baoling Cui1, 2, 3, Xiangru Tang1, 2, 3#

1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China

2 Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China

3 Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China

 Highlights 

 Partial organic fertilizer substitution and water-saving irrigation significantly reduced CH4 emissions and global warming potential, but increased N2O emissions.

 Partial organic fertilizer substitution and water-saving irrigation affected CH4 and N2O emissions by altering the structure of microbes and the activities of key enzymes in metabolic pathways of CH4 and nitrogen.

 Partial organic fertilizer substitution and water-saving irrigation significantly increased nitrogen use efficiency, yield, and 2-AP content.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
我国是全球最大的水稻生产国,而稻田CH4 和N2O的排放是我国温室气体排放的重要源头。香稻因其特有的浓郁香味被消费者喜爱,但由于香稻的增香栽培与普通水稻不同,香稻增香栽培与稻田温室气体排放的关系不够清楚。为探明增香栽培条件下,香稻田微生物结构和功能变化及与温室气体排放的关系。因此,通过在兴宁、南雄、从化、罗定和增城5个不同的生态点分别实施2年的有机肥替代部分化肥和节水灌溉(IOF+W)和常规栽培(CK)的田间试验。分析测定了香稻稻田的CH4 、N2O排放通量和总量、土壤微生物组成和功能、增温趋势(GWP)、氮肥利用率,产量以及香味物质2-乙酰-1-吡咯啉(2-AP)的含量,研究了IOF+W对CH4和N2O的排放的影响及与土壤微生物的关系。结果表明,IOF+W显著降低了CH4 排放通量和总量(降低36.95%)及增温趋势(降低31.29%),显著增加了N2O排放通量和总量(增加14.82%);IOF+W改变了土壤微生物群落结构,产甲烷菌丰度降低,甲烷氧化菌、消化细菌和反硝化细菌丰度提高,甲烷产生关键酶甲基辅酶M还原酶、甲酰甲基呋喃脱氢酶和甲基转移酶活性降低,而甲烷氧化关键酶甲醇脱氢酶活性增加,从而使总体甲烷代谢通路降低,反硝化关键酶亚硝酸氧化还原酶和硝化细菌关键酶氨单加氧酶、羟胺氧化还原酶活性上调,从而使氮代谢通路增强。上述结果表明,稻田CH4 和N2O的排放与土壤相应微生物的组成及其调节的代谢功能有关,且IOF+W显著增加了氮肥利用率(增加47.83%)、产量(增加14.77%)和2-AP含量(增加13.78%),IOF+W是华南地区香稻绿色、高效、高产、优质生产的有效措施。




Abstract  

As the global leader in rice production, China’s paddy fields contribute substantially to greenhouse gas emissions through methane (CH4) and nitrous oxide (N2O) releases.  Aromatic rice cultivation practices have been optimized to enhance the aroma, so the relationship between its cultivation and greenhouse gas emissions from paddy fields is unclear.  To investigate how aroma-enhancing cultivation practices drive microbial community dynamics in aromatic rice paddies and their implications for greenhouse gas emissions, a two-year experiment in five ecological locations (Xingning, Nanxiong, Conghua, Luoding, and Zengcheng) compared two farming practices: partial organic substitution for inorganic fertilizers combined with water-saving irrigation (IOF+W) and traditional cultivation (CK).  The CH4 and N2O emissions, soil microbial composition and function, global warming potential (GWP), nitrogen use efficiency, yield, and the content of 2-acetyl-1-pyrroline (2-AP) were measured and analyzed.  The main purpose was to investigate the impact of IOF+W on CH4 and N2O emissions and their relationship with soil microorganisms.  The results showed that IOF+W significantly reduced CH4 emission fluxes and totals (36.95%) and GWP (31.29%), while significantly increasing N2O emission fluxes and totals (14.82%).  The soil microbial community structure was reshaped by the IOF+W treatment, which suppressed methanogens but enhanced the abundances of nitrifying and denitrifying bacteria.  Key enzymatic activities involved in CH4 production, such as methyl-coenzyme M reductase, formylmethanofuran dehydrogenase, and methyltransferase, decreased.  In contrast, the activity of the key CH4-oxidizing enzyme methanol dehydrogenase increased. This shift led to an overall attenuation of the CH4 production metabolism while enhancing the CH4 oxidation metabolism.  In addition, the activities of pivotal enzymes involved in denitrification and nitrification were improved, thus enhancing nitrogen nitrification and denitrification metabolism.  Moreover, the IOF+W treatment significantly increased nitrogen use efficiency (47.83%), yield (14.77%), and 2-AP content (13.78%).  Therefore, the IOF+W treatment demonstrated good efficacy as a sustainable strategy for achieving productive, green, resource-efficient, and premium-quality aromatic rice cultivation in South China.

Keywords:  greenhouse gas       soil microbial composition        2-AP        water-saving irrigation        nitrogen use efficiency  
Received: 13 December 2024   Accepted: 19 May 2025 Online: 09 June 2025  
Fund: 

Funding was provided by the Guangdong Province Low-Carbon Fragrant Rice Cultivation Demonstration Project, China (F23032).

About author:  Ligong Peng, E-mail: plg@stu.scau.edu.cn; #Correspondence Xiangru Tang, Tel/Fax: +86-20-85280021, E-mail: tangxr@scau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Ligong Peng, Sicheng Deng, Wentao Yi, Yizhu Wu, Yingying Zhang, Xiangbin Yao, Pipeng Xing, Baoling Cui, Xiangru Tang. 2026. Partial organic fertilizer substitution and water-saving irrigation can reduce greenhouse gas emissions in aromatic rice paddy by regulating soil microorganisms while increasing yield and aroma. Journal of Integrative Agriculture, 25(1): 273-289.

Alam M S, Jia Z J. 2012. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil. Frontiers in Microbiology3, 246.

Bhatia A, Cowan N J, Drewer J, Tomer R, Kumar V, Sharma S, Paul A, Jain N, Kumar S, Jha G, Singh R, Prasanna R, Ramakrishnan B, Bandyopadhyay S K, Kumar D, Sutton M A, Pathak H. 2023. The impact of different fertiliser management options and cultivars on nitrogen use efficiency and yield for rice cropping in the Indo-Gangetic Plain: Two seasons of methane, nitrous oxide and ammonia emissions. AgricultureEcosystems and Environment355, 108593.

Butterbach-Bahl K, Baggs E M, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London (Series B: Biological Sciences), 368, 20130122.

Chen H H, Li X C, Hu F, Shi W. 2021. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Global Change Biology27, 3640–3656.

Chen J, Li C, Kong D L, Geng Y J, Wang H, Fang X T, Li S Q, Hu Z Q, Liu S W, Zou J W. 2021. Incorporating DNA-level microbial constraints helps decipher methane emissions from Chinese water-saving ground cover rice production systems. Field Crops Research260, 107992.

Chen Z M, Wang Q, Ma J C, Zhao J, Huai Y, Ma J W, Ye J, Yu Q G, Zou P, Sun W C, Zhang G M, Zhao Y J. 2022. Combing mechanical side-deep fertilization and controlled-release nitrogen fertilizer to increase nitrogen use efficiency by reducing ammonia volatilization in a double rice cropping system. Frontiers in Environmental Science10, 1–15.

Dai H L, Dai Z Q, Peng L H, Wu Y F, Zou H M, Lu X W. 2017. Metagenomic and metabolomic analysis reveals the effects of chemical phosphorus recovery on biological nutrient removal system. Chemical Engineering Journal328, 1087–1097.

Dai X L, Sun J P, Zhao Z J, Ma R P, Zheng Z Y, Liu Y H, Wang X B, Zhou W. 2023. Linking the potential activities of methanogens and methanotrophs to their communities under different fertilization regimes in coastal saline paddy soils. Applied Soil Ecology192, 105102.

Ding H N, Hu Q Y, Cai M L, Cao C G, Yang J. 2022. Effect of dissolved organic matter (DOM) on greenhouse gas emissions in rice varieties. AgricultureEcosystems and Environment330, 107870.

Dong W Y, Zhang X Y, Dai X Q, Fu X L, Yang F T, Liu X Y, Sun X M, Wen X F, Schaeffer S. 2014. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Applied Soil Ecology84, 140–147.

FAO (Food and Agriculture Organization). 2023. Online statistical database: Crops and livestock products. FAOSTAT. [2023-10-1]. https://www.fao.org/faostat/en/#data/QCL

Guo C, Ren T, Li P F, Wang B, Zou J L, Hussain S, Cong R H, Wu L S, Lu J W, Li X K. 2019. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environmental Science and Pollution Research International26, 2569–2579.

Guo S, Guo H T, Zhang Y L, Qian Z H, Wang Z J, Lu J M, Wang Y, Zhao C, Wang W L, Zhang H C, Yang F P, Huo Z Y. 2024. Effects of side deep placement of controlled release nitrogen management on rice yield, NH3, and greenhouse gas emissions. Acta Agronmica Sinica50, 1525–1539. (in Chinese)

Hamoud Y A, Shaghaleh H, Guo X P, Zhang K. 2023. pH-responsive/sustained release nitrogen fertilizer hydrogel improves yield, nitrogen metabolism, and nitrogen use efficiency of rice under alternative wetting and moderate drying irrigation. Environmental and Experimental Botany211, 105376.

Han Y, Zhang Z X, Li T C, Chen P, Nie T Z, Zhang Z H, Du S C. 2023. Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation. Agricultural Water Management287, 108434.

Hashemi F S G, Rafii M Y, Ismail M R, Mahmud T M M, Rahim H A, Asfaliza R, Malek M A, Latif M A. 2013. Biochemical, genetic and molecular advances of fragrance characteristics in rice. Critical Reviews in Plant Sciences32, 445–457.

Hou W F, Khan M R, Zhang J L, Lu J W, Ren T, Cong R H, Li X K. 2019. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. AgricultureEcosystems and Environment269, 183–192.

Huang R, Wang Y Y, Gao X S, Liu J, Wang Z F, Gao M. 2020. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. Ecotoxicology and Environmental Safety192, 110291.

Imran M, Shafiq S, Ashraf U, Qi J Y, Mo Z W, Tang X R. 2023. Biosynthesis of 2-acetyl-1-pyrroline in fragrant rice: Recent insights into agro-management, environmental factors, and functional genomics. Journal of Agricultural and Food Chemistry71, 4201–4215.

IPCC (Intergovernmental Panel on Climate Change). 2019. Online statistical database: Climate change and land (An intergovernmental panel on climate change special report on climate change). [2025-3-10]. https://www.ipcc.ch/srccl/

Jiang Y, Guan D H, Zhang W J. 2018. The effect of rice plant traits on methane emissions from paddy fields: A review. Chinese Journal of Eco-Agriculture26, 175–181. (in Chinese)

Kong D L, Li S Q, Jin Y G, Wu S, Chen J, Hu T, Wang H, Liu S W, Zou J W. 2019. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma347, 233–243.

Leon A, Izumi T. 2022. Impacts of alternate wetting and drying on rice farmers’ profits and life cycle greenhouse gas emissions in An Giang Province in Vietnam. Journal of Cleaner Production354, 131621.

Li P, Ye S F, Chen J, Wang L Y, Li Y J, Ge L, Wu G G, Song L L, Wang C, Sun Y, Wang J B, Pan A H, Quan Z X, Wu Y F. 2023. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism. ISME Communications3, 4.

Li S Y, Chen Y, Yu F, Zhang Y J, Liu K, Zhuo X X, Qiu Y Y, Zhang H, Gu J F, Wang W L, Yang J C, Liu L J. 2022. Reducing methane emission by promoting its oxidation in rhizosphere through nitrogen-induced root growth in paddy fields. Plant and Soil474, 1–20.

Liu J B, Hou H J, Sheng R, Chen Z, Zhu Y J, Qin H L, Wei W X. 2012. Denitrifying communities differentially respond to flooding drying cycles in paddy soils. Applied Soil Ecology62, 155–162.

Luo H W, He L X, Du B, Pan S G, Mo Z W, Duan M Y, Tian H, Tang X R. 2020. Biofortification with chelating selenium in fragrant rice: Effects on photosynthetic rates, aroma, grain quality and yield formation. Field Crops Research255, 107909.

Luo H W, Imran M, Yao X B, Zhang S M, Yi W T, Xing P P, Tang X R. 2023. Foliar application of glutamate and phenylalanine induced regulation in yield, protein components, aroma, and metabolites in fragrant rice. European Journal of Agronomy149, 126899.

Luo H W, Zhang Q Q, Lai R F, Zhang S M, Yi,W T, Tang X R. 2024. Regulation of 2-acetyl-1-pyrroline content in fragrant rice under different temperatures at the grain-filling stage. Journal of Agricultural and Food Chemistry72, 10521–10530.

Ma C L, Wu J F, Li F S. 2022. Impacts of combined water-saving irrigation and controlled-release urea on CH4 emission and its associated microbial communities and function. Science of the Total Environment830, 154724.

Okubo T, Tokida T, Ikeda S, Bao Z, Tago K, Hayatsu M, Nakamura H, Sakai H, Usui Y, Hayashi K, Hasegawa T, Minamisawa K. 2014. Effects of elevated carbon dioxide, elevated temperature, and rice growth stage on the community structure of rice root-associated bacteria. Microbes and Environments29, 184–190.

Qi J Q, Yuan H Y, Zhuang Q, Zama E F, Tian X F, Tao B X, Zhang B H. 2023. Effect of different types of biochar on soil properties and functional microbial communities in rhizosphere and bulk soils and their relationship with CH4 and N2O emissions. Frontiers in Microbiology14, 1292959.

Qi J Y, Yao X B, Jian L, He L X, Cao J L, Kan Z R, Wang X, Pan S G, Tang X R. 2023. A 40 % paddy surface soil organic carbon increase after 5-year no-tillage is linked with shifts in soil bacterial composition and functions. Science of the Total Environment859, 160206.

Qiao J, Wang J, Zhao D, Zhou W, Schwenke G, Yan T M, Liu D L. 2022. Optimizing N fertilizer rates sustained rice yields, improved N use efficiency, and decreased N losses via runoff from rice–wheat cropping systems. AgricultureEcosystems and Environment324, 107724.

Qin H L, Xing X Y, Tang Y F, Hou H J, Yang J, Shen R, Zhang W Z, Liu Y, Wei W X. 2019. Linking soil N2O emissions with soil microbial community abundance and structure related to nitrogen cycle in two acid forest soils. Plant and Soil435, 95–109.

Qin S P, Hu C S, Clough T J, Luo J F, Oenema O, Zhou S G. 2017. Irrigation of DOC-rich liquid promotes potential denitrification rate and decreases N2O/(N2O+N2) product ratio in a 0–2 m soil profile. Soil Biology & Biochemistry106, 1–8.

Schreiber F, Wunderlin P, Udert K M, Wells G F. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions and novel technologies. Frontiers in Microbiology3, 372.

Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. 2015. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnology Journal13, 791–800.

Song W F, Shu A P, Liu J A, Shi W C, Li M C, Zhang W X, Li Z Z, Liu G R, Yuan F S, Zhang S X, Liu Z B, Gao Z. 2022. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere32, 637–648.

Tang Z W, Zhang J, Deng A X, Zhang W J. 2022. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China. Chinese Journal of Eco-Agriculture30, 582–591. (in Chinese)

Wang J C, Song Y, Ma T F, Raza W, Li J, Howland J G, Huang Q W, Shen Q R. 2017. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology112, 42–50.

Wang Z C, Liu J J, Hamoud Y A, Wang Y S, Qiu R J, Agathokleous E, Hong C, Shaghaleh H. 2022. Natural 15N abundance as an indicator of nitrogen utilization efficiency in rice under alternate wetting and drying irrigation in soils with high clay contents. Science of the Total Environment838, 156528.

Wu J F, Ma C L, Li F S. 2022. Microbial community structure and function in paddy soil as affected by water-saving irrigation mode. European Journal of Soil Biology113, 103450.

Wu Q G, He Y, Qi Z M, Jiang Q J. 2022. Drainage in paddy systems maintains rice yield and reduces total greenhouse gas emissions on the global scale. Journal of Cleaner Production370, 133515.

Xie Y, Wang Z C, Cheng X X, Qiu R J, Hamoud Y A, Hong C, Zong X Y, Wang Y S, Agathokleous E, Guo X P. 2022. Dissecting the combined effects of cultivar, fertilization, and irrigation on rhizosphere bacterial communities and nitrogen productivity in rice. Science of the Total Environment835, 155534.

Xu C, Shen S S, Zhou B B, Feng Y Y, He Z, Shi L L, Wang Y, Wang H H, Mishra T, Xue L H. 2022. Long-term non-phosphorus application increased paddy methane emission by promoting organic acid and methanogen abundance in Tai Lake region, China. Science of the Total Environment864, 161146.

Xu Q, Dai L X, Zhou Y, Dou Z, Gao W Y, Yuan X C, Gao H, Zhang H C. 2023. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice–crayfish farming. Science of the Total Environment905, 167629.

Yan X Y, Akiyama H, Yagi K, Akimoto H. 2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochemical Cycles23, 1–15.

Yan X Y, Yagi K, Akiyama H, Akimoto H. 2005. Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology11, 1131–1141.

Yang J C. 2015. Approaches to achieve high grain yield and high resource use efficiency in rice. Frontiers of Agricultural Science and Engineering2, 115–123.

Yang Y C, Yao F F, Sun Y B, Yang Z P, Li R, Bai G, Lin W X, Chen H F. 2024. Appropriately reduced nitrogen and increased phosphorus in ratooning rice increased the yield and reduced the greenhouse gas emissions in Southeast China. Plants (Basel, Switzerland), 13, 438.

You X X, Wang S, Du L N, Wu H, Wei Y. 2022. Effects of organic fertilization on functional microbial communities associated with greenhouse gas emissions in paddy soils. Environmental Research213, 113706.

Yu F, Li S Y, Qiu Y Y, Zhuo X, Huang J, Wang H, Zhu A, Liu K, Liu L J. 2022. Microbiological mechanism of methane emission in paddy field and influence of water-saving cultivation on methane emission. Chinese Journal of Rice Science36, 1–12. (in Chinese)

Zhang G B, Yang Y T, Wei Z J, Zhu X L, Shen W Y, Ma J, Lv S H, Xu H. 2023. The low greenhouse gas emission intensity in water-saving and drought-resistance rice in a rainfed paddy field in Southwest China. Field Crops Research302, 109045.

Zhang L, Zhang F, Zhang K P, Liao P, Xu Q. 2024. Effect of agricultural management practices on rice yield and greenhouse gas emissions in the rice-wheat rotation system in China. Science of the Total Environment916, 170307.

Zhao J, Ni T, Li J, Lu Q, Fang Z Y, Huang Q W, Zhang R F, Li R, Shen B, Shen Q R. 2016. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Applied Soil Ecology99, 1–12.


[1] Shakoor Abdul, Zaib Gul, Ming Xu. Tracing the contribution of cattle farms to methane emissions through bibliometric analyses[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1220-1233.
[2] Jing Tian, Rong Tian, Juanyan Wu, Liying Huang, Jianguo Zhang. Gas production characteristics of oats and tritical silages and techniques for reducing gas emissions[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1246-1258.
[3] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[4] Jinwen Pang, Zhonghong Tian, Mengjie Zhang, Yuhao Wang, Tianxiang Qi, Qilin Zhang, Enke Liu, Weijun Zhang, Xiaolong Ren, Zhikuan Jia, Kadambot H. M. Siddique, Peng Zhang. Enhancing carbon sequestration and greenhouse gas mitigation in semiarid farmland: The promising role of biochar application with biodegradable film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(2): 517-526.
[5] Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4195-4210.
[6] Kun Han, Xinzhu Li, Liang Jia, Dazhao Yu, Wenhua Xu, Hongkun Chen, Tao Song, Peng Liu. Optimizing tillage and fertilization practices to improve the carbon footprint and energy efficiency of wheat–maize cropping systems[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3789-3802.
[7] Lingxiao Zhu, Hongchun Sun, Liantao Liu, Ke Zhang, Yongjiang Zhang, Anchang Li, Zhiying Bai, Guiyan Wang, Xiaoqing Liu, Hezhong Dong, Cundong Li. Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer[J]. >Journal of Integrative Agriculture, 2025, 24(1): 36-60.
[8] Xinrui Li, Xiafei Li, Tao Liu, Huilai Yin, Hao Fu, Yongheng Luo, Yanfu Bai, Hongkun Yang, Zhiyuan Yang, Yongjian Sun, Jun Ma, Zongkui Chen. Strategies for improving crop comprehensive benefits via a decision-making system based on machine learning in the rice‒rape, rice‒wheat and rice‒garlic rotation systems in Southwest China[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2970-2988.
[9] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[10] Zongyi Wu, Xiaolong Feng, Yumei Zhang, Shenggen Fan.

Repositioning fertilizer manufacturing subsidies for improving food security and reducing greenhouse gas emissions in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 430-443.

[11] Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3610-3621.
[12] ZHU Kuan-yu, YAN Jia-qian, SHEN Yong, ZHANG Wei-yang, XU Yun-ji, WANG Zhi-qin, YANG Jian-chang. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. >Journal of Integrative Agriculture, 2022, 21(4): 947-963.
[13] CHEN Bao-qing, Shahar BARAM, DONG Wen-yi, HE Wen-qing, LIU En-ke, YAN Chang-rong. Response of carbon footprint to plastic film mulch application in spring maize production and mitigation strategy[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1933-1943.
[14] SHAN Nan, LI Hu, LI Jian-zheng, Ee Ling Ng, MA Yan, WANG Li-gang, CHEN Qing. A major pathway for carbon and nitrogen losses- Gas emissions during storage of solid pig manure in China[J]. >Journal of Integrative Agriculture, 2019, 18(1): 190-200.
[15] CHEN Hui, HOU Hui-jing, WANG Xiao-yun, ZHU Yan, Qaisar Saddique, WANG Yun-fei, CAI Huan-jie. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in a greenhouse tomato production system[J]. >Journal of Integrative Agriculture, 2018, 17(2): 449-460.
No Suggested Reading articles found!