Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (12): 4561-4572    DOI: 10.1016/j.jia.2024.04.010
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Response of nutrient accumulation, remobilization and yield to combined application of nitrogen and potassium in waxy maize

Guanghao Li1*, Qijian Zhang1*, Weiping Lu1, 2, Dalei Lu1, 2#

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

2 Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China

 Highlights 
Topdressing potassium (K) enhanced grain yield through increased kernel weight.
Topdressing K improved nutrient transfer to grains and increased nutrient harvest index.
Topdressing K and reduced nitrogen (N) application achieved high yield and efficiency in waxy maize.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
近年来,玉米生产中重氮肥而轻钾肥的不均衡施肥现象导致土壤肥力逐年下降。均衡施肥是减少肥料施用量而且能提高玉米产量和效率的一种有效栽培措施。本试验设置2个氮肥水平:N12(180 kg N ha−1)、N15(225 kg N ha−1),4个钾肥处理K0(不施钾)、K5(75 kg K2O ha−1)、K10(150 kg K2O ha−1)、K5+5(播种时基施75 kg K2O ha−1、拔节期追施75 kg K2O ha−1),研究氮钾肥配施对糯玉米干物质和养分积累与转运特性的影响。结果表明:相同氮肥水平下,籽粒产量随钾肥施用量增加而增加,与K0比较,籽粒产量平均增加1254.8 kg ha−1(2020)和727.3 kg ha1(2021)。氮肥和钾肥用量相同时,K5+5处理通过提高粒重提高籽粒产量。K5+5处理下,N12处理的干物质和养分积累量与N15无显著差异。与K10处理相比,K5+5不仅提高了平均干物质转运量,而且提高了氮、磷、钾的转运量。此外,K5+5处理下平均干物质、氮、磷和钾的转运率分别提高3.3%、4.6%、10.6%和4.2%。追施钾肥处理提高了干物质、氮、磷和钾转运对籽粒的贡献率,促进了籽粒中营养物质的积累,进而提高了收获指数。从产量和肥料利用效率的角度考虑,我们建议南方春播糯玉米生产中优化钾肥施用方式(分别基施和追施75 kg K2O ha−1)、适当减少氮肥施用量(从225 减少到180 kg N ha−1),以实现高产高效。


Abstract  

Unbalanced fertilizer application with high intensity nitrogen (N) and insufficient potassium (K) results in declining soil fertility.  Balanced fertilization represents an effective approach to reduce fertilizer usage while enhancing maize yield and efficiency.  This study examined two N levels (180 and 225 kg N ha−1, abbreviated N12 and N15) and four K treatments (0, 75, 150, and 75+75 kg K2O ha−1, abbreviated K0, K5, K10, and K5+5) to investigate the effects of combined N and K application on biomass, nutrient accumulation, and remobilization characteristics in waxy maize.  Results indicated that grain yield increased with higher K application at constant N levels, demonstrating an average increase of 1,254.8 kg ha−1 (2020) and 727.3 kg ha−1 (2021) compared with K0.  Under identical N and K applications, K5+5 enhanced grain yield through increased kernel weight.  The K5+5 treatment showed no significant difference in biomass and nutrient accumulation between N12 and N15.  Compared to K10, K5+5 enhanced both the average remobilization amount (RBA) of biomass and increased RBA of N, phosphorus (P) and K.  Additionally, the average remobilization efficiency (RBE) of biomass, N, P, and K in K5+5 increased by 3.3, 4.6, 10.6, and 4.2%, respectively.  Moreover, topdressing K improved the apparent contribution to grain (AC) of biomass, N, P and K, facilitating greater nutrient transfer to grains and significantly increasing nutrient harvest index.  Based on yield and fertilizer use efficiency, this study recommends optimized K application (basal and topdressing 75 kg ha−1) and moderate reduction in N application (from 225 to 180 kg ha−1) for spring-sown waxy maize production in southern China.

Keywords:  waxy maize       nitrogen and potassium        biomass        nutrient remobilization        yield  
Received: 01 November 2023   Accepted: 18 March 2024 Online: 10 April 2024  
Fund: We would like to acknowledge the financial support of the Jiangsu Agricultural Industry Technology System of China (JATS [2022]497), the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX[23]3117), the Key Research & Development Program of Jiangsu Province, China (BE2021317), the National Natural Science Foundation of China (32101828), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).
About author:  Guanghao Li, Tel: +86-514-87979377, E-mail: guanghaoli@yzu.edu.cn; Qijian Zhang, E-mail: zqj20@foxmail.com; #Correspondence Dalei Lu, +86-514-87979242, Fax: +86-514-87996817, E-mail: dllu@yzu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Guanghao Li, Qijian Zhang, Weiping Lu, Dalei Lu. 2025. Response of nutrient accumulation, remobilization and yield to combined application of nitrogen and potassium in waxy maize. Journal of Integrative Agriculture, 24(12): 4561-4572.

Albornoz F. 2016. Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae205, 79–83.

Ul-Allah S, Ijaz M, Nawaz A, Sattar A, Sher A, Naeem M, Shahzad U, Farooq U, Nawaz F, Mahmood K. 2020. Potassium application improves grain yield and alleviates drought susceptibility in diverse maize hybrids. Plants9, 75.

Amanullah, Iqbal A, Irfanullah, Hidayat Z. 2016. Potassium management for improving growth and grain yield of maize (Zea mays L.) under moisture stress condition. Scientific Reports6, 34627.

Amanullah A, Iqbal A, Iqbal M. 2015. Impact of potassium rates and their application time on dry matter partitioning, biomass and harvest index of maize (Zea mays) with and without cattle dung application. Emirates Journal of Food and Agriculture27, 447–453.

Bruns H A, Ebelhar M W. 2006. Nutrient uptake of maize affected by nitrogen and potassium fertility in a humid subtropical environment. Communications in Soil Science and Plant Analysis37, 275–293.

Coskun D, Britto D T, Kronzucker H J. 2017. The nitrogen–potassium intersection: Membranes, metabolism, and mechanism. Plant Cell and Environment40, 2029–2041.

Cui Z L, Zhang F S, Chen X P, Dou Z X, Li J L. 2010. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Research116, 140–146.

Dong H, Kong X, Li W, Tang W, Zhang D. 2010. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Research119, 106–113.

Douglas L A, Riazi A, Smith C J. 1980. A semi-micro method for determining total nitrogen in soils and plant material containing nitrite and nitrate. Soil Science Society of America Journal44, 431–433.

Gao Y, Wu P T, Zhao X N, Wang Z K. 2014. Growth, yield, and nitrogen use in the wheat/maize intercropping system in an arid region of northwestern China. Field Crops Research167, 19–30.

Guo J J, Fan J L, Zhang F C, Yan S C, Zheng J, Wu Y, Li J, Wang Y L, Sun X, Liu X Q, Xiang Y Z, Li Z J. 2021. Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization. Science of the Total Environment790, 148058.

Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J W. 2019. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Research236, 14–23.

Irshad A, Maksat B, Khushnuma I, Shakeel A, Muhammad K, Misbah, Raham S K, Hou F J, Han Q F. 2023. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture22, 417–433.

Johnson R, Vishwakarma K, Hossen M S, Kumar V, Shackira A M, Puthur J T, Abdi G, Sarraf M, Hasanuzzaman M. 2022. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry172, 56–69.

Li J Y, Niu L G, Zhang Q C, Di H J, Hao J M. 2017. Impacts of long-term lack of potassium fertilization on different forms of soil potassium and crop yields on the North China Plains. Journal of Soils and Sediments17, 1607–1617.

Li Y, Liu H J, Huang G H, Zhang R H, Yang H Y. 2016. Nitrate nitrogen accumulation and leaching pattern at a winter wheat: summer maize cropping field in the North China Plain. Environmental Earth Sciences75, 118.

Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xie J, Wang K R, Li S K, Hou P. 2023. A global analysis of dry matter accumulation and allocation for maize yield breakthrough from 1.0 to 25.0 Mg ha−1Resources Conservation and Recycling188, 106656.

Liu K, Ma B L, Luan L M, Li C H. 2011. Nitrogen, phosphorus, and potassium nutrient effects on grain filling and yield of high-yielding summer corn. Journal of Plant Nutrition34, 1516–1531.

Liu W M, Hou P, Liu G Z, Yang Y S, Guo X X, Ming B, Xie R Z, Wang K R, Liu Y E, Li S K. 2020. Contribution of total dry matter and harvest index to maize grain yield - A multisource data analysis. Food and Energy Security9, e256.

Maathuis F J. 2009. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology12, 250–258.

Ni L, Lu Y L, Wang L, Wang Y H, Bai Y L. 2022. Accurate model of nitrogen accumulation in transplanted rice under different nutrient distribution ratios. Field Crops Research286, 108608.

Ning P, Li S, Yu P, Zhang Y, Li C J. 2013. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Research144, 19–27.

Niu J F, Zhang W F, Chen X P, Li C J, Zhang F S, Jiang L H, Liu Z H, Xiao K, Assaraf M, Imas P. 2011. Potassium fertilization on maize under different production practices in the North China Plain. Agronomy Journal103, 822–829.

Qiu S J, Xie J G, Zhao S C, Xu X P, Hou Y P, Wang X F, Zhou W, He P, Johnston A, Christie P, Jin J Y. 2014. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in Northeast China. Field Crops Research163, 1–9.

Ray K, Banerjee H, Dutta S, Sarkar S, Murrell T S, Singh V K, Majumdar K. 2020. Macronutrient management effects on nutrient accumulation, partitioning, remobilization, and yield of hybrid maize cultivars. Frontiers in Plant Science11, 1307.

Ren H, Cheng Y, Li R F, Yang Q L, Liu P, Dong S T, Zhang J W, Zhao B. 2020. Integrating density and fertilizer management to optimize the accumulation, remobilization, and distribution of biomass and nutrients in summer maize. Scientific Reports10, 11777.

Roobroeck D, Palm C A, Nziguheba G, Weil R, Vanlauwe B. 2021. Assessing and understanding non-responsiveness of maize and soybean to fertilizer applications in African smallholder farms. AgricultureEcosystems & Environment305, 107165.

Sardans J, Peñuelas J. 2015. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography24, 261–275.

Shi Y X, Xu L, Zhao J R, Lu B S, Fan Y L. 2019. Waxy maize industry advantages in China and opportunities in the development of the belt and road. Crops35, 15–19. (in Chinese)

Soumare A, Sarr D, Diédhiou A G. 2023. Potassium sources, microorganisms and plant nutrition: Challenges and future research directions. Pedosphere33, 105–115.

Stromberger J A, Tsai C Y, Huber D M. 1994. Interactions of potassium with nitrogen and their influence on growth and yield potential in maize. Journal of Plant Nutrition17, 19–37.

Tsay Y F, Ho C H, Chen H Y, Lin S H. 2011. Integration of nitrogen and potassium signaling. Annual Review of Plant Biology62, 207–226.

Uribelarrea M, Moose S P, Below F E. 2007. Divergent selection for grain protein affects nitrogen use in maize hybrids. Field Crops Research100, 82–90.

Wang Y, Zhang Z K, Liang Y Y, Han Y L, Han Y L, Tan J F. 2020. High potassium application rate increased grain yield of shading-stressed winter wheat by improving photosynthesis and photosynthate translocation. Frontiers in Plant Science11, 134.

Wakeel A, Ishfaq M. 2022. Potassium dynamics in soils. In: Wakeel A, Ishfaq M, eds., Potash Use and Dynamics in Agriculture. Springer Publishing, Gateway East, Singapore. pp. 7–17.

Wheal M S, Fowles T O, Palmer L T. 2011. A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Analytical Methods3, 2854–2863.

Wu L Q, Ma W Q, Zhang C C, Wu L, Zhang W F, Jiang R F, Zhang F S, Cui Z L, Chen X P. 2013. Current potassium-management status and grain-yield response of Chinese maize to potassium application. Journal of Plant Nutrition and Soil Science176, 441–449.

Wu H, Xiang J, Zhang Y P, Zhang Y K, Peng S B, Chen H Z, Zhu D F. 2018. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Scientific Reports8, 12891.

Wu X Y, Chen D, Lu Y Q, Liu W H, Yang X M, Li X Q, Du J, Li L H. 2017. Molecular characteristics of two new waxy mutations in China waxy maize. Molecular Breeding37, 27.

Xu X P, He P, Pampolino M F, Chuan L M, Johnston A M, Qiu S J, Zhao S C, Zhou W. 2013. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crops Research150, 115–125.

Yang H, Huang T Q, Ding M Q, Lu D L, Lu W P. 2017. High temperature during grain filling impacts on leaf senescence in waxy maize. Agronomy Journal109, 906–916.

Yang L, Chi Y X, Wang Y F, Zeeshan M, Zhou X B. 2021. Gradual application of potassium fertilizer elevated the sugar conversion mechanism and yield of waxy and sweet fresh-eaten maize in the semiarid cold region. Journal of Food Quality2021, 6611124.

Yu J K, Moon Y S. 2022. Corn starch: Quality and quantity improvement for industrial uses. Plants11, 92.

Yu W J, Yue Y J, Wang F X. 2022. The spatial–temporal coupling pattern of grain yield and fertilization in the North China plain. Agricultural Systems196, 103330.

Zhai L C, Zhang L H, Cui Y Z, Zhai LF, Zheng M J, Yao Y R, Zhang J T, Hou W B, Wu L Y, Jia X L. 2024. Combined application of organic fertilizer and chemical fertilizer alleviates the kernel position effect in summer maize by promoting post-silking nitrogen uptake and dry matter accumulation. Journal of Integrative Agriculture23, 1179–1194.

Zhang F S, Niu J F, Zhang W F, Chen X P, Li C J, Yuan L X, Xie J C. 2010. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant and Soil335, 21–34.

Zhang M L, Hu Y Y, Han W, Chen J, Lai J S, Wang Y. 2023. Potassium nutrition of maize: Uptake, transport, utilization, and role in stress tolerance. The Crop Journal11, 1048–1058.

Zhang Q J, Li G H, Lu W P, Lu D L. 2022. Interactive effects of nitrogen and potassium on grain yield and quality of waxy maize. Plants11, 2528.

Zhao R F, Chen X P, Zhang F S, Zhang H L, Schroder J, Römheld V. 2006. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agronomy Journal98, 938–945.

Zhao Y, Gao J, Su S Z, Shan X H, Li S P, Liu H K, Yuan Y P, Li H. 2021. Regulation of the activity of maize glutamate dehydrogenase by ammonium and potassium. BioscienceBiotechnologyand Biochemistry85, 262–271.

Zheng C Z, Li C L, Tian L B, Shen Z Y, Feng G Z, Hou W F, Liu F L, Gao Q, Wang Y. 2023. Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling. European Journal of Agronomy151, 126994.

Zheng H J, Wang H, Yang H, Wu J L, Shi B, Cai R, Xu A Z, Lou L J. 2013. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS ONE8, e66606.

Zhu D, Li Z H, Guo L X, Lu J W, Cong R H, Ren T, Li X K. 2021. The main driving factors and responses to increase in soil available potassium in the Yangtze River basin over the past 30 years. Land Degradation and Development32, 4484–4493.

[1] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[2] Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2410-2424.
[3] Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1688-1703.
[4] Zhaowen Mo, Siren Cheng, Yong Ren, Longxin He, Shenggang Pan, Haidong Liu, Hua Tian, Umair Ashraf, Meiyang Duan, Xiangru Tang. Reduced tillage coupled with straw return improves the grain yield and 2-acetyl-1-pyrroline content in fragrant rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1718-1737.
[5] Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang. Reasonable dry cultivation methods can balance the yield and grain quality of rice[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1030-1043.
[6] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[7] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[8] Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3803-3818.
[9] Xiaobo Gu, Zhikai Cheng, Yadan Du, Huanjie Cai, Yupeng Li, Yuannong Li, Heng Fang, Shikun Sun. Optimizing planting density to improve growth, yield and resource use efficiencies for winter oilseed rape under ridge-furrow film mulching[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3819-3837.
[10] Jinfeng Wang, Xueyun Yang, Shaomin Huang, Lei Wu, Zejiang Cai, Minggang Xu. Long-term combined application of organic and inorganic fertilizers increases crop yield sustainability by improving soil fertility in maize–wheat cropping systems[J]. >Journal of Integrative Agriculture, 2025, 24(1): 290-305.
[11] Chuandong Tan, Yadan Du, Xiaobo Gu, Wenquan Niu, Jinbo Zhang, Christoph Müller, Xuesong Cao. Aerated irrigation increases tomato production by improving soil nitrogen availability[J]. >Journal of Integrative Agriculture, 2025, 24(1): 322-338.
[12] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[13] Ningning Yu, Bingshuo Wang, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. Water and nitrogen footprint assessment of integrated agronomic practice management in a summer maize cropping system[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3610-3621.
[14] Lingxiao Zhu, Hongchun Sun, Ranran Wang, Congcong Guo, Liantao Liu, Yongjiang Zhang, Ke Zhang, Zhiying Bai, Anchang Li, Jiehua Zhu, Cundong Li. Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3387-3405.
[15] ZHANG Zhi-peng, LI Zhen, HE Fang, LÜ Ji-juan, XIE Bin, YI Xiao-yu, LI Jia-min, LI Jing, SONG Jing-han, PU Zhi-en, MA Jian, PENG Yuan-ying, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang, LI Wei. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3380-3393.
No Suggested Reading articles found!