Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation

Jiaying Ma1, 2, 3, 4, Jian Liu1, 2, 3, 4, Yue Wen1, 2, 3, 4, Zhanli Ma1, 2, 3, 4, Jinzhu Zhang1, 2, 3, 4, Feihu Yin1, 4, 5, Tehseen Javed1, Jihong Zhang1, 2, 3, 4, Zhenhua Wang1, 2, 3, 4#

1 College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China

2 Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production & Construction Group, Shihezi University, Shihezi 832000, China

3 Technology Innovation Center for Agricultural Water and Fertilizer Efficiency Equipment of Xinjiang Production & Construction Corps, Shihezi University, Shihezi 832000, China

4 Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China

5 Institute of Farmland Water Conservancy and Soil-fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

近年来,合理利用咸水资源进行农业灌溉已成为缓解水资源短缺的有效策略。为了长期安全有效地开发咸水资源,明确灌水盐度对加工番茄的影响并制定最佳水盐灌溉策略至关重要。本研究进行了两年(2018年和2019年)的田间小区试验,以探讨灌水盐度(S11 g L-1S23 g L-1S35 g L-1)和灌溉定额W1305 mmW2485 mmW3611 mm)对土壤体积含水量、土壤盐分、加工番茄生长、产量和水利用效率的影响。结果表明,使用低中度咸水(<3 g L-1)灌溉提高了作物的水分吸收和利用能力,与S3相比,S1S2处理的土壤含水量(SWC)分别降低了6.5‒7.62%10.52‒13.23%(2018S1水平下,土壤含盐量(SSC)积累速率随灌水量的增加而逐渐降低。2018,W3处理SSCW1W2分别下降85.0077.94%2019年分别下降82.6073.68%高水低盐条件下(S1W3)土壤出现淋洗作用,随着灌水盐度和灌水次数的增加淋洗作用逐渐减弱。2019年,各处理土壤含盐量较2018年增加了10.81‒89.72%。加工番茄的产量随着灌溉量的增加而增加,两年S1W3处理达到峰值(125304.85 kg ha-1,2018;128329.71 kg ha-1,2019S2W3处理在第一年咸水灌溉条件下,保持相对较高的产量,与S1W3处理相比仅下降2.85%,但在第二年显著降低15.88%。结构方程模型(SEM)显示,土壤环境因素(SWCSSC)直接影响产量,同时也对加工番茄的生长指标(株高、茎粗和叶面积指数)产生间接影响。TOPSIS分析表明S1W3S1W2S2W2得分始终排在前三位。单因素边际效应函数显示,当灌溉水盐度低于0.96 g L-1时,对综合评价分数(CES)有正向贡献。使用盐度为3 g L-1的咸水一年,且灌溉量为485 mm时,可确保加工番茄保持高产量和相对较高的CES0.709)。然而,连续使用咸水灌溉超过一年不可行。



Abstract  

In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resources over the long term, it is crucial to understand the effects of salinity on crops and develop optimal water-salinity irrigation strategies for processing tomatoes. A two-year field experiment was conducted in 2018 and 2019 to explore the impact of water salinity levels (S1: 1 g L–1, S2: 3 g L–1, and S3: 5 g L–1) and irrigation amounts (W1: 305 mm, W2: 485 mm, and W3: 611 mm) on the soil volumetric water content and soil salinity, as well as processing tomato growth, yield, and water use efficiency. The results showed that irrigation with low to moderately saline water (<3 g L–1) enhanced plant water uptake and utilization capacity, with the soil water content (SWC) reduced by 6.5‒7.62% and 10.52‒13.23% for the S1 and S2 levels, respectively, compared to the S3 level in 2018. Under S1 conditions, the soil salt content (SSC) accumulation rate gradually declined with an increase in the irrigation amount. For example, W3 decreased by 85.00 and 77.94% compared with W1 and W2 in 2018, and by 82.60 and 73.68% 2019, respectively. Leaching effects were observed at the W3 level under S1, which gradually diminished with increasing water salinity and duration. In 2019, the salt contents of soil under each of the treatments increased by 10.81‒89.72% compared with the contents in 2018. The yield of processing tomatoes increased with an increasing irrigation amount and peaked in the S1W3 treatment for the two years, reaching 125,304.85 kg ha–1 in 2018 and 128,329.71 kg ha–1 in 2019. Notably, in the first year, the S2W3 treatment achieved relatively high yields, exhibiting only a 2.85% reduction compared to the S1W3 treatment. However, the yield of the S2W3 treatment declined significantly in two years, and it was 15.88% less than that of the S1W3 treatment. Structural equation modeling (SEM) revealed that soil environmental factors (SWC and SSC) directly influence yield while also exerting indirect impacts on the growth indicators of processing tomatoes (plant height, stem diameter, and leaf area index). The TOPSIS method identified S1W3, S1W2, and S2W2 as the top three treatments. The single-factor marginal effect function also revealed that irrigation water salinity contributed to the composite evaluation scores (CES) when it was below 0.96 g L–1. Using brackish water with a salinity of 3 g L–1 at an irrigation amount of 485 mm over one year ensured that processing tomatoes maintained high yields with a relatively high CES (0.709). However, using brackish water for more than one year proved unfeasible.

Keywords:  Processing tomatoes       soil water and salt transport              yield              water use efficiency              irrigation water salinity              mulched drip irrigation  
Online: 27 March 2025  
Fund: This study was funded by the National Key R&D Program of China (2022YFD1900405).
About author:  Jiaying Ma, E-mail: mjy980315@163.com; #Zhenhua Wang, E-mail: wzh2002027@163.com

Cite this article: 

Jiaying Ma, Jian Liu, Yue Wen, Zhanli Ma, Jinzhu Zhang, Feihu Yin, Tehseen Javed, Jihong Zhang, Zhenhua Wang. 2025. Enhancing the yield and water use efficiency of processing tomatoes (Lycopersicon esculentum Miller) through optimal irrigation and salinity management under mulched drip irrigation. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.03.021

Alomar R, Jena D. 2023. Potassium and brackish water irrigation influence electrical conductivity, potassium dynamic, and maize yield in coastal saline soil. Communications in Soil Science and Plant Analysis, 55, 723-734.

Cheng M H, Wang H D, Fan J L, Wang X K, Sun X, Yang L, Zhang S H, Xiang Y Z, Zhang F C. 2021. Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agricultural Water Management, 256, 107105.

Costa F H R, Sousa G G D, Lima J M D, Almeida M D S, Sousa H C, Gomes S P, Cruz E M C, Azevedo B M A. 2024. Frequencies of irrigation in millet crop under salt stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 28, e272197.

Gao Y, Shao G C, Lu J, Wang Y, Cui J T. 2023. Changes in yield of tomato irrigated with salty water varied by soil properties and irrigation practices: A meta-analysis. Archives of Agronomy and Soil Science, 69, 2300-2313.

Guo M J, Liu Y, Ren S M, Yang P L, Zhang Z L L, Zhang C, Xia Y H. 2016. Effect of alternative irrigation between brackish water and fresh water on root growth of processing tomato in Hetao. Journal of China Agricultural University, 21, 65-72. (in Chinese).

Hu Y X, Li X W, Jin M G, Wang R, Chen J Y, Guo S L. 2020. Reduced co-occurrence and ion-specific preferences of soil microbial hub species after ten years of irrigation with brackish water. Soil and Tillage Research, 199, 104599.

Hussain G, Al-Jaloud A A. 1995. Effect of irrigation and nitrogen on water use efficiency of wheat in Saudi Arabia. Agricultural Water Management, 27, 143-153.

Hussain I, Hasnain Z, Zafar S, Nazir M J, Jatoi S A. 2024. Salt induced positive and negative effects on germination and other physiological traits of sorghum vulgare seedlings. Pakistan Journal of Botany, 56, 807-814.

Jia H. 2021. Effect of water and nitrogen coupling on water consumption and growth characteristics of tomato processing by degradable mulch covered by drip irrigation. MSc thesis, Shihezi University, China.

Kahlon U Z, Murtaza G, Ghafoor A. 2012. Amelioration of saline-sodic soil with amendments using brackish water, canal water and their combination. International Journal of AgricuLture and Biology, 14, 38-46.

Li J A, Chen J, He P R, Chen D, Dai X P, Jin Q, Su X Y. 2022. The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia. Agricultural Water Management, 274, 107940.

Ma J Y, Li Z Y, Jiang W E, Liu J F. 2023. Effects of different salinity levels in drip irrigation with brackish water on soil water-salt transport and yield of protected tomato (Solanum lycopersicum). Agronomy-Basel, 13, 2442. 

Ma Z L, Zhu Y, Liu J, Li Y Q, Zhang J Z, Wen Y, Song L B, Liang Y H, Wang Z H. 2023. Multi-objective optimization of saline water irrigation in arid oasis regions: Integrating water-saving, salinity control, yield enhancement, and CO2 emission reduction for sustainable cotton production. Science of the Total Environment, 912, 169672.

MWRPRC (Ministry of Water Resources of the People's Republic of China). 2023. China water resources bulletin 2022. [2023-06-29]. https://www.gov.cn/lianbo/bumen/202306/content_6889175.htm (in Chinese) 

Rasool G, Guo X P, Wang Z C, Ali M U, Chen S, Zhang S X, Wu Q J, Ullah M S. 2020. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agricultural Water Management, 239, 106239.

Schmidt J E, Vannette R L, Igwe A, Blundell R, Casteel C L, Gaudin A C M. 2020. Effects of agricultural management on rhizosphere microbial structure and function in processing tomato plants. Applied and Environmental Microbiology, 86, e01064-19.

Sikder R K, Wang X R, Zhang H H, Gui H P, Dong Q, Jin D S, Song M Z. 2022. Influence of nitrogen on the growth and yield of cotton under salinity stress. Journal of Plant Nutrition, 45, 1181-1197.

Sun L, Li B, Yao M Z, Mao L Z, Zhao M Y, Niu H F, Xu Z Y, Wang T L, Wang J K. 2023. Moderate water deficit and nitrogen application rate are conducive to improving the nitrogen uptake and yield of greenhouse tomatoes. Rhizosphere, 28, 100789.

Wan S Q, Kang Y H, Wang D, Liu S P. 2010. Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agricultural Water Management, 98, 105-113.

Wan S Q, Kang Y H, Wang D, Liu S P, Feng L P. 2007. Effect of drip irrigation with saline water on tomato (Lycopersicon esculentum) yield and water use in semi-humid area. Agricultural Water Management, 90, 63-74.

Wang F, Kang S Z, Du T S, Li F S, Qiu R J. 2011. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management, 98, 1228-1238.

Wang L C, Ning S R, Chen X L, Li Y L, Guo W Z, Ben-Gal A. 2021. Modeling tomato root water uptake influenced by soil salinity under drip irrigation with an inverse method. Agricultural Water Management, 255, 106975.

Wang Q J, Shan Y Y. 2015. Review of research development on water and soil regulation with brackish water irrigation. Transactions of the Chinese Society for Agricultural Machinery, 46, 117-126.

Wang X D, Tian W, Zheng W D, Shah S, Li J S, Wang X Z, Zhang X Y. 2023. Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis. Agricultural Water Management, 280, 108213.

Wang Z H, Wu Q, Fan B H, Zheng X R, Zhang J Z, Li W H, Guo L. 2019. Effects of mulching biodegradable films under drip irrigation on soil hydrothermal conditions and cotton (Gossypium hirsutum L.) yield. Agricultural Water Management, 213, 477-485.

Wei C C, Li F H, Yang P L, Ren S M, Wang S J, Wang Y, Xu Z, Xu Y, Wei R, Zhang Y X. 2019. Effects of irrigation water salinity on soil properties, N2O emission and yield of spring maize under mulched drip irrigation. Water, 11, 1548.

Xu B X, Li R Y, Wu D B, Zhang Y, Cao Y E. 2013. Utilization status and research progress of brackish water. Journal of Anhui Agricultural Sciences, 41, 13914-13916, 13981. (in Chinese).

Yang P, Cheng M H, Wu L F, Fan J L, Li S, Wang H D, Qian L. 2023. Review on drip irrigation: Impact on crop yield, quality, and water productivity in China. Water, 15, 1733.

Yu X M, Zhang J W, Zhang Y H, Ma L L, Jiao X C, Zhao M F, Li J M. 2023. Identification of optimal irrigation and fertilizer rates to balance yield, water and fertilizer productivity, and fruit quality in greenhouse tomatoes using TOPSIS. Scientia Horticulturae, 311, 111829.

Zhang A, Li K, Sun J, Dang H, Sun C, Rahma A E, Wang G, Zhang J, Feng D. 2020. Effects of a 10-year irrigation with saline water on soil physico-chemical properties and cotton production. Journal of Soil & Water Conservation, 75, 629-639. 

Zhang J F, Wang Z H, Fan B H, Hou Y S, Dou Y Q, Ren Z L, Chen X J. 2020. Investigating the proper application rate of nitrogen under mulched drip irrigation to improve the yield and quality of tomato in saline soil. Agronomy-Basel, 10, 293.

Zhang J P, Wang H, Feng D, Cao C Y, Zheng C L, Dang H K, Li K J, Gao Y, Sun C T. 2024. Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study. Agricultural Water Management, 293, 108703.

Zhang Y H, Li X Y, Šimůnek J, Shi H B, Chen N, Hu Q, Tian T. 2021. Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages. Agricultural Water Management, 244, 106601.

Zhang Z D, Zhang D L, Li J M, Zhang Z, Jiao X C, Zhang J. 2016. Environmental response of stomatal and hydraulic conductances and their effects on regulating transpiration of cucumber. Transactions of the Chinese Society for Agricultural Machinery, 47, 139-147.

Zhou B B, Liang C F, Chen X P, Ye S T, Peng Y, Yang L, Duan M L, Wang X P. 2022. Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China. Agricultural Water Management, 263, 107487.

Zhu C, Tian G L, Luo G W, Kong Y L, Guo J J, Wang M, Guo S W, Ling N, Shen Q R. 2018. N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agriculture Ecosystems & Environment, 254, 191-201.

 

No related articles found!
No Suggested Reading articles found!