Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (12): 4573-4587    DOI: 10.1016/j.jia.2024.03.078
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study

Xinglong Wang1*, Fan Liu1*, Nan Zhao2, Xia Du1, Pijiang Yin1, Tongliang Li1, Tianqiong Lan1, Dongju Feng1, Fanlei Kong1#, Jichao Yuan1#

1 College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, China

2 Weinan Academy of Agricultural Sciences, Weinan 714000, China

 Highlights  
Maize yield was affected by the lodging, increasing every 1% lodging rate decreased the maize yield by 58.05 kg ha–1.
Solar radiation explained 34.7% of the variation in lodging rate in emergence to silking (E–R1).
Optimal sowing dates (SDs) for high and stable yield occurred from late March to mid-April.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
优化播期(SDs)是调整玉米生产以适应气候变化和提高产量的潜在策略。然而,目前关于倒伏、产量与气候因子变化相关的研究鲜见报道。因此,本研究旨在探讨不同播期下玉米生长季重要气候变量的变化规律和分布,及其对产量和倒伏的影响,以及玉米生长期影响倒伏的关键气候因素。本研究通过为期5年(2015年、2016年、2019年、2020年、2021年)的大田试验,评估不同播期条件下气候因子对四川盆地产量和倒伏的影响。结果表明,延迟播期倒伏率对玉米产量变异系数(3.31~10.50%)有显著影响。倒伏率每增加1%,产量降低58.05 kg hm-1。拖迟播期降低了苗期至吐丝期的太阳辐射(Sr),太阳辐射变化解释了34.7%的倒伏率变异。历史气象资料分析表明,1990-2021年太阳辐射年际变化幅度为-8.7763 MJ m-2 yr-1,其中5月下旬至7月上旬的降低幅度尤为明显。VPA分析表明,出苗期到生理成熟期和苗期至吐丝期的气候变量对不同SDs下产量的贡献率分别为43.9%和53.2%,对倒伏率的贡献率分别为56.0和45.4%。RF分析表明,SDs的变化主要影响基部节间形态的建成从而增加倒伏率的发生,并解释了69.79%的倒伏变异。本研究阐明获得高产和稳产的最佳播种日期为3月下旬至4月中旬,这归因于苗期至吐丝期较高的太阳辐射。综上所述,研究结果不仅为了解气候变化对玉米茎秆倒伏的影响提供重要见解,还为调整播期缓解玉米倒伏提供栽培理论依据。


Abstract  

Optimizing sowing dates (SDs) represents a viable strategy for adapting maize production to climate change and enhancing yield.  However, research remains limited regarding the integrated effects of lodging and yield in relation to climatic variables across different SDs.  This study examines the patterns and distribution of key climatic variables during maize growth seasons, their influence on yield and lodging, and the critical factors affecting lodging at crucial growth stages under various SD scenarios.  The research evaluated climate change impacts on yield and lodging through field experiments spanning 5 years (2015, 2016, 2019–2021), incorporating 25 SDs in the Sichuan Basin, China.  Results indicated that lodging rate significantly affected the coefficient of variation (CV, 3.31–10.50%) of maize yield.  Each 1% increase in lodging rate resulted in a yield reduction of 58.05 kg ha–1.  SD modifications notably influenced solar radiation (Sr) from emergence to silking (E–R1).  The study determined that Sr accounted for 34.7% of lodging rate variation in E–R1.  Analysis of historical meteorological data revealed significant inter-annual Sr variations, showing a decline of –8.7763 MJ m–2 yr–1 from 1990 to 2021, particularly evident from late May to early July.  Variation partitioning analysis (VPA) demonstrated that climatic variables during emergence to physiological maturity (E–R6) and E–R1 explained 43.9 and 53.2% of yield variation across SDs, respectively, while contributing 56.0 and 45.4% to lodging.  Random forest (RF) analysis established that SD changes primarily influenced lodging rates through modifications in basal internode morphology, explaining 69.79% of the variation.  The research identified optimal sowing dates between late March and mid-April for achieving consistent high yields, attributed to increased Sr during E-R1.  This study provides critical insights into climate change effects on stalk lodging and offers practical guidance for SD adjustment to reduce maize lodging rates.

Keywords:  sowing date       climatic variables        stalk lodging        maize yield  
Received: 28 December 2023   Accepted: 28 February 2024 Online: 25 April 2024  
Fund: This work was supported by the National Key Research and Development Program of China (2022YFD190160304), the Key Program of Natural Science Foundation of Sichuan Province, China (2022NSFSC0013), the Sichuan Maize Innovation Team Construction Project, China (SCCXTD-2023-02), and the National Science and Technology Support Projects, China (2015BAC05B05).
About author:  Xinglong Wang, E-mail: wangxl@sicau.edu.cn; Fan Liu, E-mail: 2020201024@stu.sicau.edu.cn; #Correspondence Jichao Yuan, Tel: +86-13980074156, E-mail: yuanjichao@sicau.edu.cn; Fanlei Kong, Tel:+86-18628222445, E-mail: kflstar@163.com * These authors contributed equally to this study.

Cite this article: 

Xinglong Wang, Fan Liu, Nan Zhao, Xia Du, Pijiang Yin, Tongliang Li, Tianqiong Lan, Dongju Feng, Fanlei Kong, Jichao Yuan. 2025. Optimizing sowing dates increase solar radiation to mitigate maize lodging and yield variability: A five-year field study. Journal of Integrative Agriculture, 24(12): 4573-4587.

Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research122, 40–48.

Ahmad I, Kamran M, Ali S, Bilegjargal B, Cai T, Ahmad S, Meng X P, Su W N, Liu T N, Han Q F. 2018. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research222, 66–77.

Berry P M, Baker C J, Hatley D, Dong R, Wang X, Blackburn G A, Miao Y, Sterling M, Whyatt J D. 2021. Development and application of a model for calculating the risk of stem and root lodging in maize. Field Crops Research262, 108037.

Bonelli L B, Monzon P J, Cerrudo A, Rizzalli R H, Andrade F H. 2016. Maize grain yield components and source–sink relationship as affected by the delay in sowing date. Field Crops Research198, 215–225.

Chikov V I, Avvakumova N Y, Bakirova G G, Belova L A, Zaripova L M. 2001. Apoplastic transport of 14C-photosynthates measured under drought and nitrogen supply. Biologia Plantarum44, 517–521.

Dai X L, Wang Y C, Dong X C, Qian T F, Yin L J, Dong S X, Chu J P, He M R. 2017. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal5, 541–552.

Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough S P, Janeczko A, Kurowska M, Lundqvist J, Lundqvist U, Marzec M, Matyszczak I, Müller A H, Oklestkova J, Schulz B, Zakhrabekova S, Hansson M. 2014. Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiology166, 1912–1927.

Du X, Dou P, Chen X, Kong F L, Yuan J C. 2022. Effects of meteorological conditions on maize growth and yield in hilly area of Central Sichuan and optimization of sowing date: A case study of Zhongjiang, Sichuan. Journal of Hunan Agricultural University (Natural Sciences), 48, 257–264. (in Chinese)

Esechie H A, Rodriguez V, Al-Asmi H. 2004. Comparison of local and exotic maize varieties for stalk lodging components in a desert climate. European Journal of Agronomy21, 21–30.

Flint-Garcia S A, Jampatong C, Darrah L L, McMullen M D. 2003. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Science43, 13–22.

Gao Z, Feng H Y, Liang X G, Lin S, Zhao X, Shen S, Du X, Cui Y H, Zhou S L. 2021. Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain. Agricultural and Forest Meteorology298–299, 108274.

Han X M, Hu C, Chen Y F, Qiao Y, Liu D H, Fan J, Li S L, Zhang Z. 2020. Crop yield stability and sustainability in a rice–wheat cropping system based on 34-year field experiment. European Journal of Agronomy113, 125965.

He Y Y, Wang K C, Zhou C L, Wild M. 2018. A revisit of global dimming and brightening based on the sunshine duration. Geophysical Research Letters45, 4281–4289.

Van Heerden P D R, Singels A, Paraskevopoulos A, Rossler R. 2015. Negative effects of lodging on irrigated sugarcane productivity - An experimental and crop modelling assessment. Field Crops Research180, 135–142.

Hou P, Liu Y E, Liu W M, Liu G Z, Xie R Z, Wang K R, Ming B, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, Yuan L Z, Zhao H Y, et al. 2020. How to increase maize production without extra nitrogen input. Resources Conservation and Recycling160, 104913.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate Change 2021: The physical science basis. Summary for policymakers. Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [2023-9-25]. https://www.ipcc.ch/report/ar6/wg1/

Jiang S Z, Huang Y W, Zhao L, Cui B, Wang Y S, Hu X T, Zheng S S, Zou Q Y, Feng Y, Guo L. 2022. Effects of clouds and aerosols on ecosystem exchange, water and light use efficiency in a humid region orchard. Science of the Total Environment811, 152377.

Jin R, Li Z, Wang X L, Liu F, Kong F L, Liu Q L, Lan T Q, Feng D J, Yuan J C. 2023. Optimizing row spacing increases stalk lodging resistance by improving light distribution in dense maize populations. Agronomy13, 462.

Kamran M, Cui W W, Ahmad I, Meng X P, Zhang X D, Su W N, Chen J Z, Ahmad S, Fahad S, Han Q F, Liu T N. 2018. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation84, 317–332.

Khobra R, Sareen S, Meena B K, Kumar A, Tiwari V, Singh G P. 2019. Exploring the traits for lodging tolerance in wheat genotypes: A review. Physiology and Molecular Biology of Plants25, 1–12.

Li B B, Chen X M, Deng T, Zhao X, Li F, Zhang B C, Wang X, Shen S, Zhou S L. 2024. Timing effect of high temperature on the plasticity of internode and plant architecture in maize. Journal of Integrative Agriculture23, 551–565.

Li C Z, Li C J. 2021. Ridge-furrow with plastic film mulching system decreases the lodging risk for summer maize plants under different nitrogen fertilization rates and varieties in dry semi-humid areas. Field Crops Research263, 108056.

Li S Y, Wang Y X, Hu C D, Yan Y. 2015. Effect of strong wind lodging at pre- and post-tasseling stages on growth and yield of summer maize. Chinese Journal of Applied Ecology26, 2405–2413. (in Chinese)

Li T, Zhang X P, Liu Q, Yan P, Liu J, Chen Y Q, Sui P. 2022. Yield and yield stability of single cropping maize under different sowing dates and the corresponding changing trends of climatic variables. Field Crops Research285, 108589.

Li Y B, Tao F L. 2023. Rice yield response to climate variability diverges strongly among climate zones across China and is sensitive to trait variation. Field Crops Research301, 109034.

Liu F, Zhou F, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. 2023. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. European Journal of Agronomy148, 126871.

Liu Q, Yang Z P, Zhou W, Wang T, Fu Y, Yue X P, Chen H, Tao Y F, Deng F, Lei X L, Ren W J, Chen Y. 2023. Solar radiation utilization of five upland–paddy cropping systems in low-light regions promoted by diffuse radiation of paddy season. Agricultural and Forest Meteorology338, 109527.

Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. 2023. China can be self-sufficient in maize production by 2030 with optimal crop management. Nature Communications14, 2637.

Ma D L, Xie R Z, Liu X, Niu X K, Hou P, Wang K R, Lu Y L, Li S K. 2014. Lodging-related stalk characteristics of maize varieties in China since the 1950s. Crop Science54, 2805–2814.

Mi C Q, Zhang X D, Li S M, Yang J Y, Zhu D H, Yang Y. 2011. Assessment of environment lodging stress for maize using fuzzy synthetic evaluation. Mathematical and Computer Modelling54, 1053–1060.

Mercado L M, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox P M. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature458, 1014–1017.

Noor R B M, Caviness C E. 1980. Influence of induced lodging on pod distribution and seed yield in soybeans. Agronomy Journal72, 904–906.

Novacek M J, Mason S C, Galusha T D, Yaseen M. 2013. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal105, 268–276.

Niu Y N, Chen T X, Zhao C C, Zhou M X. 2022. Lodging prevention in cereals: Morphological, biochemical, anatomical traits and their molecular mechanisms, management and breeding strategies. Field Crops Research289, 10873.

Peng B, Guan K Y. 2021. Harmonizing climate-smart and sustainable agriculture. Nature Food2, 853–854.

Piñera-Chavez F J, Berry P M, Foulkes M J, Molero G, Reynolds M P. 2016. Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties. Field Crops Research196, 64–74.

Rahimi-Moghaddam S, Kambouzia J, Deihimfard R. 2018. Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology253–254, 1–14.

Robertson D J, Smith S, Gardunia B, Cook D. 2014. An improved method for accurate phenotyping of corn stalk strength. Crop Science54, 2038–2044.

Sancho M A, de Forchetti S M, Pliego F, Valpuesta V, Quesada M A. 1996. Peroxidase activity and isoenzymes in the culture medium of NaCl adapted tomato suspension cells. Plant Cell Tissue and Organ Culture442, 161–167.

Sekhon R S, Joyner C N, Ackerman A J, McMahah C S, Cook D D, Robertson D J. 2020. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Research249, 107737.

Shah A, Tanveer M, Rehman A, Anjum A, Iqbal J, Ahmad R. 2017. Lodging stress in cereal-effects and management: an overview. Environmental Science and Pollution Research24, 5222–5237.

Shao L P, Liu Z J, Li H Z, Zhang Y L, Dong M M, Guo X H, Zhang H, Huang B W, Ni R B, Li G, Cai C, Chen W P, Luo W H, Yin X Y. 2020. The impact of global dimming on crop yields is determined by the source–sink imbalance of carbon during grain filling. Global Change Biology27, 689–708.

Slewinski T L, Braun D M. 2010. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science178, 341–349.

Tian B J, Zhu J C, Nie Y S, Xu C L, Meng Q F, Wang P. 2019. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science205, 77–87.

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.

Tsimba R, Edmeades G O, Millner J P, Kemp P D. 2013. The effect of planting date on maize grain yields and yield components. Field Crops Research150, 135–144.

Vera C L, Duguid S D, Fox S L, Rashid K Y, Dribnenki J C P, Clarke F R. 2012. Short communication: Comparative effect of lodging on seed yield of flax and wheat. Canadian Journal of Plant Science92, 39–43.

Vitantonio-Mazzi L N, Borrás L, Garibaldi L A, Pérez D H, Gallo S, Gamin B L. 2020. Management options for reducing maize yield gaps in contrasting sowing dates. Field Crops Research251, 107779.

Wang C, Hu D, Liu X B, She H Z, Ruan R W, Yang H, Yi Z L, Wu D Q. 2015. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research180, 46–53.

Wang Q, Xue J, Chen J L, Fan Y H, Zhang G Q, Xie R Z, Ming B, Hou P, Wang K R, Li S K. 2020. Key indicators affecting maize stalk lodging resistance of different growth periods under different sowing dates. Journal of Integrative Agriculture19, 2419–2428.

Wang S, Li, H G, Dong Z Y, Wang C, Wei X, Long Y, Wan X Y. 2023. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize (Zea mays L.). Computational and Structural Biotechnology Journal21, 485–494.

Weng F, Zhang W J, Wu X R, Xu X, Ding Y F, Li G H, Liu Z H, Wang S H. 2017. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Scientific Reports7, 46596.

Wild M, Gilgen H, Roesch A, Ohmura A, Long C N, Dutton E G, Forgan B, Kallis A, Russak V, Tsvetkov A. 2005. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science308, 847–850.

Wolfe D W, DeGaetano A T, Peck G M, Carey M, Ziska L H, Lea-Cox J, Kemanian A R, Hoffmann M P, Hollinger D Y. 2018. Unique challenges and opportunities for northeastern US crop production in a changing climate. Climatic Change146, 231–245.

Wu F Q, Guo S M, Huang W B, Han Y C, Wang Z B, Feng L, Wang G P, Li X F, Lei Y P, Yang B F, Xiong S W, Zhi X Y, Chen J L, Xin M H, Wang Y R, Li Y B. 2023. Adaptation of cotton production to climate change by sowing date optimization and precision resource management. Industrial Crops and Products203, 117167.

Wu W, Shah F, Ma B L. 2022. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop and Environment1, 133–144.

Xu C L, Gao Y B, Tian B J, Ren J H, Meng Q F, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research200, 71–79.

Xu Z, Lai T Z, Li S, Si D X, Zhang C C, Cui Z L, Chen X P. 2018. Promoting potassium allocation to stalk enhances stalk bending resistance of maize (Zea mays L.). Field Crops Research215, 200–206.

Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. 2020a. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. European Journal of Agronomy117, 126073.

Xue J, Gou L, Zhao Y S, Yao M N, Yao H S, Tian J S, Zhang W F. 2016a. Effects of light intensity within the canopy on maize lodging. Field Crops Research188, 133–141.

Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. 2020b. Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods16, 1–12.

Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and density maize. Journal of Integrative Agriculture16, 2717–2725.

Xue J, Zhao Y S, Gou L, Shi Z G, Yao M N, Zhang W F. 2016b. How high plant density of maize affects basal internode development and strength formation. Crop Science56, 3295–3306.

Yang Y S, Guo X X, Hou P, Xue J, Liu G Z, Liu W M, Wang Y H, Zhao R L, Ming B, Xie R Z, Wang K R, Li S K. 2020. Quantitative effects of solar radiation on maize lodging resistance mechanical properties. Field Crops Research255, 107906.

Zhan X X, Kong F L, Liu Q L, Lan T Q, Liu Y Q, Xu J Z, Ou Q, Chen L, Kessel G, Kempenaar C, Yuan J C. 2022. Maize basal internode development significantly affects stalk lodging resistance. Field Crops Research286, 108611.

Zhang J K. 2020. The Principle and Method of Crop Quality Analysis. Science Press, China. (in Chinese)

Zhang P, Gu S C, Wang Y Y, Yang R M, Yan Y, Zhang S, Sheng D C, Cui T, Huang S B, Wang P. 2021. Morphological and mechanical variables associated with lodging in maize (Zea mays L.). Field Crops Research269, 108178.

Zimmermann A, Webber H, Zhao G, Ewert F, Kros J, Wolf J, Britz W, de Vries W. 2017. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agricultural Systems157, 81–92.

Zuber M S, Loesch P J. 1966. Effects of years and locations stalk strength in corn (Zea mays L.). Agronomy Journal58, 173–175.

[1] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[2] Jing Chen, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2227-2241.
[3] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[4] REN Ai-xia, SUN Min, WANG Pei-ru, XUE Ling-zhu, LEI Miao-miao, XUE Jian-fu, GAO Zhi-qiang, YANG Zhen-ping. No-tillage effects on grain yield and nitrogen requirements in hybrid rice transplanted with single seedlings: Results of a long-term experiment[J]. >Journal of Integrative Agriculture, 2019, 18(1): 33-42.
[5] HU Wei, CHEN Mei-li, ZHAO Wen-qing, CHEN Bing-lin, WANG You-hua, WANG Shan-shan, MENG Ya-li, ZHOU Zhi-guo. The effects of sowing date on cottonseed properties at different fruiting-branch positions[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1322-1330.
[6] WANG Chun-ling, SHEN Shuang-he, ZHANG Shu-yu, LI Qiao-zhen, YAO Yu-bi. Adaptation of potato production to climate change by optimizing sowing date in the Loess Plateau of central Gansu, China[J]. >Journal of Integrative Agriculture, 2015, 14(2): 398-409.
No Suggested Reading articles found!