Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 467-479    DOI: 10.1016/j.jia.2024.02.023
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background 
Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang#, Zhengsheng Zhang#

Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China

 Highlights 
● A CSSL population with carrying segments from Gossypium tomentosum in a G. hirsutum background was established.
● Sixty-four stable QTLs were identified and candidate genes for three of them were further identified.
● The favorable alleles from G. tomentosum have great potentials to improve the fiber quality and seed related traits of G. hirsutum.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  将野生种固有的遗传多样性引入到栽培品种已成为作物遗传育种和遗传资源研究的热点之一。棉花纤维和种子相关的性状,对全球经济和人民生计至关重要,在棉花育种中占据着重要地位。本研究利用野生棉种毛棉对栽培种陆地棉进行遗传基础改良,并对纤维和种子相关性状进行QTL定位。以陆地棉为背景,构建了含有559单株的染色体片段代换系的群体。分别定位到72个产量性状QTL,89个纤维品质性状QTL76个棉籽营养品质性状QTL104QTL的有利等位基因来源于毛棉。共定位到64稳定QTL,并进一步对其中3QTL进行候选基因鉴定。本研究的结果有助于进一步研究这些经济性状形态发生的遗传基础,并表明毛棉在改善陆地棉纤维和种子相关性状方面具有巨大的育种潜力。

Abstract  

Introducing the inherent genetic diversity of wild species into cultivars has become one of the hot topics in crop genetic breeding and genetic resource research.  Fiber- and seed-related traits, which are critical to the global economy and people’s livelihoods, are the principal focus of cotton breeding.  Here, the wild cotton species Gossypium tomentosum was used to broaden the genetic basis of Ghirsutum and identify QTLs for fiber- and seed-related traits.  A population of 559 chromosome segment substitution lines (CSSLs) was established with various chromosome segments from Gtomentosum in a Ghirsutum cultivar background.  Totals of 72, 89, and 76 QTLs were identified for three yield traits, five fiber quality traits, and six cottonseed nutrient quality traits, respectively.  Favorable alleles of 104 QTLs were contributed by Gtomentosum.  Sixty-four QTLs were identified in two or more environments, and candidate genes for three of them were further identified.  The results of this study contribute to further studies on the genetic basis of the morphogenesis of these economic traits, and indicate the great breeding potential of Gtomentosum for improving the fiber- and seed-related traits in Ghirsutum.

Keywords:  Gossypium tomentosum        chromosome segment substitution lines        yield        fiber quality        cottonseed nutrient quality  
Received: 04 December 2023   Accepted: 23 January 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32172064).
About author:  Yongshui Hao, E-mail: yshao95@163.com; #Correspondence Jian Zhang, E-mail: zhangjianswau@126.com; Zhengsheng Zhang, Tel: +86-23-68250453, E-mail: zhangzs@swu.edu.cn

Cite this article: 

Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. 2025. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background . Journal of Integrative Agriculture, 24(2): 467-479.

Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. 2019. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theoretical and Applied Genetics132, 1–25.

Ben-Amotz A, Avron M. 1974. Isolation, characterization, and partial purification of a reduced nicotinamide adenine dinucleotide phosphate-dependent dihydroxyacetone reductase from the halophilic alga Dunaliella parvaPlant Physiology53, 628–631.

Van Berloo R. 2008. GGT 2.0: Versatile software for visualization and analysis of genetic data. Journal of Heredity99, 232–236.

Bertrand J A, Sudduth T Q, Condon A, Jenkins T C, Calhoun M C. 2005. Nutrient content of whole cottonseed. Journal of Dairy Science88, 1470–1477.

Burns M J, Barnes S R, Bowman J G, Clarke M H, Werner C P, Kearsey M J. 2003. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity (Edinb), 90, 39–48.

Chang X, Guo C, Pan Z, Wu Y, Shen C, Chao L, Shui G, You C, Xu J, Lin Z, Nie X. 2023. QTL Mapping for fiber quality based on introgression lines population from Ghirsutum × GtomentosumAgriculture13, 579.

Chee P W, Draye X, Jiang C X, Decanini L, Delmonte T A, Bredhauer R, Smith C W, Paterson A H. 2005. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theoretical and Applied Genetics111, 772–781.

Chen Q, Wang W, Wang C, Zhang M, Yu J, Zhang Y, Yuan B, Ding Y, Jones D C, Paterson A H, Chee P W, Wang B. 2020. Validation of QTLs for fiber quality introgressed from Gossypium mustelinum by selective genotyping. G3-Genes Genomes Genetics10, 2377–2384.

Chen Z J, Sreedasyam A, Ando A, Song Q, De Santiago L M, Hulse-Kemp A M, Ding M, Ye W, Kirkbride R C, Jenkins J, Plott C, Lovell J, Lin Y M, Vaughn R, Liu B, Simpson S, Scheffler B E, Wen L, Saski C A, Grover C E, et al. 2020. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics52, 525–533.

Fang L, Zhao T, Hu Y, Si Z, Zhu X, Han Z, Liu G, Wang S, Ju L, Guo M, Mei H, Wang L, Qi B, Wang H, Guan X, Zhang T. 2021. Divergent improvement of two cultivated allotetraploid cotton species. Plant Biotechnology Journal19, 1325–1336.

Feng L, Zhang S, Xing L, Yang B, Gao X, Xie X, Zhou B. 2019. QTL analysis for yield and fibre quality traits using three sets of introgression lines developed from three Gossypium hirsutum race stocks. Molecular Genetics and Genomics294, 789–810.

Guo L X, Shi Y Z, Gong J W, Liu A Y, Tan Y N, Gong W K, Li J W, Chen T T, Shang H H, Ge Q, Lu Q W, Sun J, Yuan Y L. 2018. Genetic analysis of the fiber quality and yield traits in Ghirsutum background using chromosome segments substitution lines (CSSLs) from Gossypium barbadenseEuphytica214, 82.

Harding Jr J W, Pyeritz E A, Copeland E S, White 3rd H B. 1975. Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver. Biochemical Journal146, 223–229.

He P, Zhang H, Zhang L, Jiang B, Xiao G, Yu J. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture21, 1563–1575.

Hou M, Cai C, Zhang S, Guo W, Zhang T, Zhou B. 2013. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosumJournal of Genetics92, 445–459.

Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M U, Han J, Wang K, Wang Q, Wu H, Mei G, et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics51, 739–748.

Keerio A A, Shen C, Nie Y, Ahmed M M, Zhang X, Lin Z. 2018. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × GtomentosumInternational Journal of Molecular Sciences19, 243.

Kim W, Lee Y, Park J, Lee N, Choi G. 2013. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in ArabidopsisPlant and Cell Physiology54, 555–572.

Lee J H, Kim S H. 2022. Synthesis and characterization of biopolyurethane crosslinked with castor oil-based hyperbranched polyols as polymeric solid-solid phase change materials. Scientific Reports12, 14646.

Li P T, Wang M, Lu Q W, Ge Q, Rashid M H O, Liu A Y, Gong J W, Shang H H, Gong W K, Li J W, Song W W, Guo L X, Su W, Li S Q, Guo X P, Shi Y Z, Yuan Y L. 2017. Comparative transcriptome analysis of cotton fiber development of upland cotton (Gossypium hirsutum) and chromosome segment substitution lines from Ghirsutum × GbarbadenseBMC Genomics18, 705.

Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. 2022. Genome-wide artificial introgressions of Gossypium barbadense into Ghirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. Journal of Advanced Research53, 1–16.

Li S Q, Liu A Y, Kong L L, Gong J W, Li J W, Gong W K, Lu Q W, Li P T, Ge Q, Shang H H, Xiao X H, Liu R X, Zhang Q, Shi Y Z, Yuan Y L. 2019. QTL mapping and genetic effect of chromosome segment substitution lines with excellent fiber quality from Gossypium hirsutum × Gossypium barbadenseMolecular Genetics and Genomics294, 1123–1136.

Liu X, Ma J, Li Q, Guo Z, Wang Y, Wang Q, Yao J, Zhang Y, Wang W, Teng Z, Liu D, Guo K, Liu D, Zhang Z. 2023. Detection of QTL controlling fiber-related traits in a recombinant inbred lines population from Ghirsutum race punctatum using RTM-GWAS procedure. Industrial Crops and Products193, 116198.

Liu X, Yang L, Wang J, Wang Y, Guo Z, Li Q, Yang J, Wu Y, Chen L, Teng Z, Liu D, Liu D, Guo K, Zhang Z. 2022. Analyzing quantitative trait loci for fiber quality and yield-related traits from a recombinant inbred line population with Gossypium hirsutum Race palmeri as one parent. Frontiers in Plant Science12, 817748.

Lu K, Zhang Y D, Zhao C F, Zhou L H, Zhao Q Y, Chen T, Wang C L. 2020. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. Plant Molecular Biology102, 199–212.

Lu Q, Li P, Yang R, Xiao X, Li Z, Wu Q, Gong J, Ge Q, Liu A, Du S, Wang J, Shi Y, Yuan Y. 2022. QTL mapping and candidate gene prediction for fiber yield and quality traits in a high-generation cotton chromosome substitution line with Gossypium barbadense segments. Molecular Genetics and Genomics297, 287–301.

Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. 2017. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant10, 670–684.

Nee G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe W J J. 2017. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications8, 72.

Pei W, Song J, Wang W, Ma J, Jia B, Wu L, Wu M, Chen Q, Qin Q, Zhu H, Hu C, Lei H, Gao X, Hu H, Zhang Y, Zhang J, Yu J, Qu Y. 2021. Quantitative trait locus analysis and identification of candidate genes for micronaire in an interspecific backcross inbred line population of Gossypium hirsutum×Gossypium barbadenseFrontiers in Plant Science12, 763016.

Quettier A L, Shaw E, Eastmond P J. 2008. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-P dehydrogenase, which is required for glycerol catabolism and post germinative seedling growth in ArabidopsisPlant Physiology148, 519–528.

Said J I, Song M, Wang H, Lin Z, Zhang X, Fang D D, Zhang J. 2015. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific Ghirsutum × Gbarbadense populations. Molecular Genetics and Genomics290, 1003–1025.

Shen C, Wang N, Zhu D, Wang P, Wang M, Wen T, Le Y, Wu M, Yao T, Zhang X, Lin Z. 2021. Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics113, 1999–2009.

Shi Y, Li W, Li A, Ge R, Zhang B, Li J, Liu G, Li J, Liu A, Shang H, Gong J, Gong W, Yang Z, Tang F, Liu Z, Zhu W, Jiang J, Yu X, Wang T, Wang W, Chen T, Wang K, Zhang Z, Yuan Y. 2015. Constructing a high-density linkage map for Gossypium hirsutum × Gossypium barbadense and identifying QTLs for lint percentage. Journal of Integrative Plant Biology57, 450–467.

Shi Y, Zhang B, Liu A, Li W, Li J, Lu Q, Zhang Z, Li S, Gong W, Shang H, Gong J, Chen T, Ge Q, Wang T, Zhu H, Liu Z, Yuan Y. 2016. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadenseBMC Genomics17, 877.

Singh A, Pandey A, Srivastava A K, Tran L S, Pandey G K. 2016. Plant protein phosphatases 2C: From genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology36, 1023–1035.

Sun J, Cui H, Wu B, Wang W, Yang Q, Zhang Y, Yang S, Zhao Y, Xu D, Liu G, Qin T. 2022. Genome-wide identification of cotton (Gossypium spp.) glycerol-3-phosphate dehydrogenase (GPDH) family members and the role of GhGPDH5 in response to drought stress. Plants (Basel), 11, 592.

Ulloa M, Wang C, Saha S, Hutmacher R B, Stelly D M, Jenkins J N, Burke J, Roberts P A. 2016. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species. Genetica144, 167–179.

Vigeolas H, Waldeck P, Zank T, Geigenberger P. 2007. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnology Journal5, 431–441.

Wang B, Draye X, Zhuang Z, Zhang Z, Liu M, Lubbers E L, Jones D, May O L, Paterson A H, Chee P W. 2017. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and GmustelinumTheoretical and Applied Genetics130, 1297–1308.

Wang B, Nie Y, Lin Z, Zhang X, Liu J, Bai J. 2012. Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × Gdarwinii Watt. Theoretical and Applied Genetics125, 1263–1274.

Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J. 2020. Identification of candidate genes for key fiber-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with Gbarbadense introgressions. Plant Biotechnology Journal18, 707–720.

Wang F R, Xu Z Z, Sun R, Gong Y C, Liu G D, Zhang J X, Wang L M, Zhang C Y, Fan S J, Zhang J. 2013. Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Molecular Breeding32, 547–562.

Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, et al. 2017. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature Genetics49, 579–587.

Wang P, Ding Y Z, Lu Q X, Guo W Z, Zhang T Z. 2008. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutumChinese Science Bulletin53, 1512–1517.

Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T. 2012. Inheritance of long staple fiber quality traits of Gossypium barbadense in Ghirsutum background using CSILs. Theoretical and Applied Genetics124, 1415–1428.

Wang W, Sun Y, Yang P, Cai X, Yang L, Ma J, Ou Y, Liu T, Ali I, Liu D, Zhang J, Teng Z, Guo K, Liu D, Liu F, Zhang Z. 2019. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics20, 599.

Wang W W, Tan Z Y, Xu Y Q, Zhu A A, Li Y, Yao J, Tian R, Fang X M, Liu X Y, Tian Y M, Teng Z H, Zhang J, Liu D J, Liu D X, Shang H H, Liu F, Zhang Z S. 2017. Chromosome structural variation of two cultivated tetraploid cottons and their ancestral diploid species based on a new high-density genetic map. Scientific Reports7, 7640.

Wang Z, Ren Z, Cheng C, Wang T, Ji H, Zhao Y, Deng Z, Zhi L, Lu J, Wu X, Xu S, Cao M, Zhao H, Liu L, Zhu J, Li X. 2020. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in ArabidopsisMolecular Plant13, 1284–1297.

Wendel J F, Grover C E. 2015. Taxonomy and evolution of the cotton genus, GossypiumCotton57, 25–44.

Wu M, Li L, Liu G, Li X, Pei W, Li X, Zhang J, Yu S, Yu J. 2019. Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland × Pima cotton. Molecular Biology Reports46, 1199–1212.

Xiang Y, Nakabayashi K, Ding J, He F, Bentsink L, Soppe W J. 2014. REDUCED Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in ArabidopsisPlant Cell26, 4362–4375.

Yang D, Ye X, Zheng X, Cheng C, Ye N, Huang F. 2016. Development and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome. Frontiers in Plant Science7, 1737.

Yang H, Wang W, He Q, Xiang S, Tian D, Zhao T, Gai J. 2017. Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiology and Molecular Biology of Plants23, 877–889.

Yang P, Sun X, Liu X, Wang W, Hao Y, Chen L, Liu J, He H, Zhang T, Bao W, Tang Y, He X, Ji M, Guo K, Liu D, Teng Z, Liu D, Zhang J, Zhang Z. 2022. Identification of candidate genes for lint percentage and fiber quality through QTL mapping and transcriptome analysis in an allotetraploid interspecific cotton CSSLs population. Frontiers in Plant Science13, 882051.

Yang Z, Wang J, Huang Y, Wang S, Wei L, Liu D, Weng Y, Xiang J, Zhu Q, Yang Z, Nie X, Yu Y, Yang Z, Yang Q Y. 2023. CottonMD: A multi-omics database for cotton biological study. Nucleic Acids Research51, D1446–D1456.

Yu J, Yu S, Gore M, Wu M, Zhai H, Li X, Fan S, Song M, Zhang J. 2013a. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica191, 375–389.

Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J. 2013b. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics126, 275–287.

Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y. 2013. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS ONE8, e57220.

Zhang Z, Rong J, Waghmare V N, Chee P W, May O L, Wright R J, Gannaway J R, Paterson A H. 2011. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosumTheoretical and Applied Genetics123, 1075–1088.

Zhou Y, Lu Q, Ma J, Wang D, Li X, Di H, Zhang L, Hu X, Dong L, Liu X, Zeng X, Zhou Z, Weng J, Wang Z. 2022. Using a high density bin map to analyze quantitative trait locis of germination ability of maize at low temperatures. Frontiers in Plant Science13, 978941.

Zhu H, Han X, Lv J, Zhao L, Xu X, Zhang T, Guo W. 2011. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and GhirsutumBMC Plant Biology11, 40.

Zia M A, Shah S H, Shoukat S, Hussain Z, Khan S U, Shafqat N. 2021. Physicochemical features, functional characteristics, and health benefits of cottonseed oil: A review. Brazilian Journal of Biology82, e243511.

Zou J, Zhang Z, Kang Q, Yu S, Wang J, Chen L, Liu Y, Ma C, Zhu R, Zhu Y, Dong X, Jiang H, Wu X, Wang N, Hu Z, Qi Z, Liu C, Chen Q, Xin D, Wang J. 2022. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean. Journal of Integrative Agriculture21, 2197–2210.

No related articles found!
No Suggested Reading articles found!