Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. 2019. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theoretical and Applied Genetics, 132, 1–25.
Ben-Amotz A, Avron M. 1974. Isolation, characterization, and partial purification of a reduced nicotinamide adenine dinucleotide phosphate-dependent dihydroxyacetone reductase from the halophilic alga Dunaliella parva. Plant Physiology, 53, 628–631.
Van Berloo R. 2008. GGT 2.0: Versatile software for visualization and analysis of genetic data. Journal of Heredity, 99, 232–236.
Bertrand J A, Sudduth T Q, Condon A, Jenkins T C, Calhoun M C. 2005. Nutrient content of whole cottonseed. Journal of Dairy Science, 88, 1470–1477.
Burns M J, Barnes S R, Bowman J G, Clarke M H, Werner C P, Kearsey M J. 2003. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity (Edinb), 90, 39–48.
Chang X, Guo C, Pan Z, Wu Y, Shen C, Chao L, Shui G, You C, Xu J, Lin Z, Nie X. 2023. QTL Mapping for fiber quality based on introgression lines population from G. hirsutum × G. tomentosum. Agriculture, 13, 579.
Chee P W, Draye X, Jiang C X, Decanini L, Delmonte T A, Bredhauer R, Smith C W, Paterson A H. 2005. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theoretical and Applied Genetics, 111, 772–781.
Chen Q, Wang W, Wang C, Zhang M, Yu J, Zhang Y, Yuan B, Ding Y, Jones D C, Paterson A H, Chee P W, Wang B. 2020. Validation of QTLs for fiber quality introgressed from Gossypium mustelinum by selective genotyping. G3-Genes Genomes Genetics, 10, 2377–2384.
Chen Z J, Sreedasyam A, Ando A, Song Q, De Santiago L M, Hulse-Kemp A M, Ding M, Ye W, Kirkbride R C, Jenkins J, Plott C, Lovell J, Lin Y M, Vaughn R, Liu B, Simpson S, Scheffler B E, Wen L, Saski C A, Grover C E, et al. 2020. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics, 52, 525–533.
Fang L, Zhao T, Hu Y, Si Z, Zhu X, Han Z, Liu G, Wang S, Ju L, Guo M, Mei H, Wang L, Qi B, Wang H, Guan X, Zhang T. 2021. Divergent improvement of two cultivated allotetraploid cotton species. Plant Biotechnology Journal, 19, 1325–1336.
Feng L, Zhang S, Xing L, Yang B, Gao X, Xie X, Zhou B. 2019. QTL analysis for yield and fibre quality traits using three sets of introgression lines developed from three Gossypium hirsutum race stocks. Molecular Genetics and Genomics, 294, 789–810.
Guo L X, Shi Y Z, Gong J W, Liu A Y, Tan Y N, Gong W K, Li J W, Chen T T, Shang H H, Ge Q, Lu Q W, Sun J, Yuan Y L. 2018. Genetic analysis of the fiber quality and yield traits in G. hirsutum background using chromosome segments substitution lines (CSSLs) from Gossypium barbadense. Euphytica, 214, 82.
Harding Jr J W, Pyeritz E A, Copeland E S, White 3rd H B. 1975. Role of glycerol 3-phosphate dehydrogenase in glyceride metabolism. Effect of diet on enzyme activities in chicken liver. Biochemical Journal, 146, 223–229.
He P, Zhang H, Zhang L, Jiang B, Xiao G, Yu J. 2022. The GhMAX2 gene regulates plant growth and fiber development in cotton. Journal of Integrative Agriculture, 21, 1563–1575.
Hou M, Cai C, Zhang S, Guo W, Zhang T, Zhou B. 2013. Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum. Journal of Genetics, 92, 445–459.
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M U, Han J, Wang K, Wang Q, Wu H, Mei G, et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics, 51, 739–748.
Keerio A A, Shen C, Nie Y, Ahmed M M, Zhang X, Lin Z. 2018. QTL mapping for fiber quality and yield traits based on introgression lines derived from Gossypium hirsutum × G. tomentosum. International Journal of Molecular Sciences, 19, 243.
Kim W, Lee Y, Park J, Lee N, Choi G. 2013. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis. Plant and Cell Physiology, 54, 555–572.
Lee J H, Kim S H. 2022. Synthesis and characterization of biopolyurethane crosslinked with castor oil-based hyperbranched polyols as polymeric solid-solid phase change materials. Scientific Reports, 12, 14646.
Li P T, Wang M, Lu Q W, Ge Q, Rashid M H O, Liu A Y, Gong J W, Shang H H, Gong W K, Li J W, Song W W, Guo L X, Su W, Li S Q, Guo X P, Shi Y Z, Yuan Y L. 2017. Comparative transcriptome analysis of cotton fiber development of upland cotton (Gossypium hirsutum) and chromosome segment substitution lines from G. hirsutum × G. barbadense. BMC Genomics, 18, 705.
Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. 2022. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. Journal of Advanced Research, 53, 1–16.
Li S Q, Liu A Y, Kong L L, Gong J W, Li J W, Gong W K, Lu Q W, Li P T, Ge Q, Shang H H, Xiao X H, Liu R X, Zhang Q, Shi Y Z, Yuan Y L. 2019. QTL mapping and genetic effect of chromosome segment substitution lines with excellent fiber quality from Gossypium hirsutum × Gossypium barbadense. Molecular Genetics and Genomics, 294, 1123–1136.
Liu X, Ma J, Li Q, Guo Z, Wang Y, Wang Q, Yao J, Zhang Y, Wang W, Teng Z, Liu D, Guo K, Liu D, Zhang Z. 2023. Detection of QTL controlling fiber-related traits in a recombinant inbred lines population from G. hirsutum race punctatum using RTM-GWAS procedure. Industrial Crops and Products, 193, 116198.
Liu X, Yang L, Wang J, Wang Y, Guo Z, Li Q, Yang J, Wu Y, Chen L, Teng Z, Liu D, Liu D, Guo K, Zhang Z. 2022. Analyzing quantitative trait loci for fiber quality and yield-related traits from a recombinant inbred line population with Gossypium hirsutum Race palmeri as one parent. Frontiers in Plant Science, 12, 817748.
Lu K, Zhang Y D, Zhao C F, Zhou L H, Zhao Q Y, Chen T, Wang C L. 2020. The Arabidopsis kinase-associated protein phosphatase KAPP, interacting with protein kinases SnRK2.2/2.3/2.6, negatively regulates abscisic acid signaling. Plant Molecular Biology, 102, 199–212.
Lu Q, Li P, Yang R, Xiao X, Li Z, Wu Q, Gong J, Ge Q, Liu A, Du S, Wang J, Shi Y, Yuan Y. 2022. QTL mapping and candidate gene prediction for fiber yield and quality traits in a high-generation cotton chromosome substitution line with Gossypium barbadense segments. Molecular Genetics and Genomics, 297, 287–301.
Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. 2017. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 10, 670–684.
Nee G, Kramer K, Nakabayashi K, Yuan B, Xiang Y, Miatton E, Finkemeier I, Soppe W J J. 2017. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications, 8, 72.
Pei W, Song J, Wang W, Ma J, Jia B, Wu L, Wu M, Chen Q, Qin Q, Zhu H, Hu C, Lei H, Gao X, Hu H, Zhang Y, Zhang J, Yu J, Qu Y. 2021. Quantitative trait locus analysis and identification of candidate genes for micronaire in an interspecific backcross inbred line population of Gossypium hirsutum×Gossypium barbadense. Frontiers in Plant Science, 12, 763016.
Quettier A L, Shaw E, Eastmond P J. 2008. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-P dehydrogenase, which is required for glycerol catabolism and post germinative seedling growth in Arabidopsis. Plant Physiology, 148, 519–528.
Said J I, Song M, Wang H, Lin Z, Zhang X, Fang D D, Zhang J. 2015. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Molecular Genetics and Genomics, 290, 1003–1025.
Shen C, Wang N, Zhu D, Wang P, Wang M, Wen T, Le Y, Wu M, Yao T, Zhang X, Lin Z. 2021. Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics, 113, 1999–2009.
Shi Y, Li W, Li A, Ge R, Zhang B, Li J, Liu G, Li J, Liu A, Shang H, Gong J, Gong W, Yang Z, Tang F, Liu Z, Zhu W, Jiang J, Yu X, Wang T, Wang W, Chen T, Wang K, Zhang Z, Yuan Y. 2015. Constructing a high-density linkage map for Gossypium hirsutum × Gossypium barbadense and identifying QTLs for lint percentage. Journal of Integrative Plant Biology, 57, 450–467.
Shi Y, Zhang B, Liu A, Li W, Li J, Lu Q, Zhang Z, Li S, Gong W, Shang H, Gong J, Chen T, Ge Q, Wang T, Zhu H, Liu Z, Yuan Y. 2016. Quantitative trait loci analysis of Verticillium wilt resistance in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense. BMC Genomics, 17, 877.
Singh A, Pandey A, Srivastava A K, Tran L S, Pandey G K. 2016. Plant protein phosphatases 2C: From genomic diversity to functional multiplicity and importance in stress management. Critical Reviews in Biotechnology, 36, 1023–1035.
Sun J, Cui H, Wu B, Wang W, Yang Q, Zhang Y, Yang S, Zhao Y, Xu D, Liu G, Qin T. 2022. Genome-wide identification of cotton (Gossypium spp.) glycerol-3-phosphate dehydrogenase (GPDH) family members and the role of GhGPDH5 in response to drought stress. Plants (Basel), 11, 592.
Ulloa M, Wang C, Saha S, Hutmacher R B, Stelly D M, Jenkins J N, Burke J, Roberts P A. 2016. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species. Genetica, 144, 167–179.
Vigeolas H, Waldeck P, Zank T, Geigenberger P. 2007. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnology Journal, 5, 431–441.
Wang B, Draye X, Zhuang Z, Zhang Z, Liu M, Lubbers E L, Jones D, May O L, Paterson A H, Chee P W. 2017. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum. Theoretical and Applied Genetics, 130, 1297–1308.
Wang B, Nie Y, Lin Z, Zhang X, Liu J, Bai J. 2012. Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt. Theoretical and Applied Genetics, 125, 1263–1274.
Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J. 2020. Identification of candidate genes for key fiber-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnology Journal, 18, 707–720.
Wang F R, Xu Z Z, Sun R, Gong Y C, Liu G D, Zhang J X, Wang L M, Zhang C Y, Fan S J, Zhang J. 2013. Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L. Molecular Breeding, 32, 547–562.
Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, et al. 2017. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nature Genetics, 49, 579–587.
Wang P, Ding Y Z, Lu Q X, Guo W Z, Zhang T Z. 2008. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chinese Science Bulletin, 53, 1512–1517.
Wang P, Zhu Y, Song X, Cao Z, Ding Y, Liu B, Zhu X, Wang S, Guo W, Zhang T. 2012. Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theoretical and Applied Genetics, 124, 1415–1428.
Wang W, Sun Y, Yang P, Cai X, Yang L, Ma J, Ou Y, Liu T, Ali I, Liu D, Zhang J, Teng Z, Guo K, Liu D, Liu F, Zhang Z. 2019. A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics, 20, 599.
Wang W W, Tan Z Y, Xu Y Q, Zhu A A, Li Y, Yao J, Tian R, Fang X M, Liu X Y, Tian Y M, Teng Z H, Zhang J, Liu D J, Liu D X, Shang H H, Liu F, Zhang Z S. 2017. Chromosome structural variation of two cultivated tetraploid cottons and their ancestral diploid species based on a new high-density genetic map. Scientific Reports, 7, 7640.
Wang Z, Ren Z, Cheng C, Wang T, Ji H, Zhao Y, Deng Z, Zhi L, Lu J, Wu X, Xu S, Cao M, Zhao H, Liu L, Zhu J, Li X. 2020. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant, 13, 1284–1297.
Wendel J F, Grover C E. 2015. Taxonomy and evolution of the cotton genus, Gossypium. Cotton, 57, 25–44.
Wu M, Li L, Liu G, Li X, Pei W, Li X, Zhang J, Yu S, Yu J. 2019. Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland × Pima cotton. Molecular Biology Reports, 46, 1199–1212.
Xiang Y, Nakabayashi K, Ding J, He F, Bentsink L, Soppe W J. 2014. REDUCED Dormancy5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. Plant Cell, 26, 4362–4375.
Yang D, Ye X, Zheng X, Cheng C, Ye N, Huang F. 2016. Development and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome. Frontiers in Plant Science, 7, 1737.
Yang H, Wang W, He Q, Xiang S, Tian D, Zhao T, Gai J. 2017. Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiology and Molecular Biology of Plants, 23, 877–889.
Yang P, Sun X, Liu X, Wang W, Hao Y, Chen L, Liu J, He H, Zhang T, Bao W, Tang Y, He X, Ji M, Guo K, Liu D, Teng Z, Liu D, Zhang J, Zhang Z. 2022. Identification of candidate genes for lint percentage and fiber quality through QTL mapping and transcriptome analysis in an allotetraploid interspecific cotton CSSLs population. Frontiers in Plant Science, 13, 882051.
Yang Z, Wang J, Huang Y, Wang S, Wei L, Liu D, Weng Y, Xiang J, Zhu Q, Yang Z, Nie X, Yu Y, Yang Z, Yang Q Y. 2023. CottonMD: A multi-omics database for cotton biological study. Nucleic Acids Research, 51, D1446–D1456.
Yu J, Yu S, Gore M, Wu M, Zhai H, Li X, Fan S, Song M, Zhang J. 2013a. Identification of quantitative trait loci across interspecific F2, F2:3 and testcross populations for agronomic and fiber traits in tetraploid cotton. Euphytica, 191, 375–389.
Yu J, Zhang K, Li S, Yu S, Zhai H, Wu M, Li X, Fan S, Song M, Yang D, Li Y, Zhang J. 2013b. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Theoretical and Applied Genetics, 126, 275–287.
Zhang T, Qian N, Zhu X, Chen H, Wang S, Mei H, Zhang Y. 2013. Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in China. PLoS ONE, 8, e57220.
Zhang Z, Rong J, Waghmare V N, Chee P W, May O L, Wright R J, Gannaway J R, Paterson A H. 2011. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. Theoretical and Applied Genetics, 123, 1075–1088.
Zhou Y, Lu Q, Ma J, Wang D, Li X, Di H, Zhang L, Hu X, Dong L, Liu X, Zeng X, Zhou Z, Weng J, Wang Z. 2022. Using a high density bin map to analyze quantitative trait locis of germination ability of maize at low temperatures. Frontiers in Plant Science, 13, 978941.
Zhu H, Han X, Lv J, Zhao L, Xu X, Zhang T, Guo W. 2011. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum. BMC Plant Biology, 11, 40.
Zia M A, Shah S H, Shoukat S, Hussain Z, Khan S U, Shafqat N. 2021. Physicochemical features, functional characteristics, and health benefits of cottonseed oil: A review. Brazilian Journal of Biology, 82, e243511.
Zou J, Zhang Z, Kang Q, Yu S, Wang J, Chen L, Liu Y, Ma C, Zhu R, Zhu Y, Dong X, Jiang H, Wu X, Wang N, Hu Z, Qi Z, Liu C, Chen Q, Xin D, Wang J. 2022. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean. Journal of Integrative Agriculture, 21, 2197–2210.
|