Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Fresh maize yield in response to nitrogen application rates and characteristics of nitrogen-efficient varieties
Fei Bao1*, Ping Zhang1*, Qiying Yu2, Yunfei Cai2, Bin Chen1, Heping Tan1, Hailiang Han1, Junfeng Hou1, Fucheng Zhao1#

1 Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China

2 Zhejiang Provincial Seed Management Station, Hangzhou 310000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Efficient nitrogen management is crucial in developing sustainable strategies aimed at enhancing yield while mitigating negative environmental impacts.  However, limited research has focused on this aspect in the production of fresh maize.  Therefore, this study analyzed nitrogen application rates and yield for 40 sweet and 44 waxy maize varieties in Zhejiang Province, China from 2015 to 2019 across five sites.  Nitrogen application rates were categorized as relatively high (RHN: >300 kg ha-1 for sweet maize, >320 kg ha-1 for waxy maize) or relatively low (RLN).  An increase in nitrogen application rates for both sweet and waxy maize significantly reduced nitrogen fertilizer partial productivity (R2=0.616, P<0.01; R2=0.643, P<0.01), indicating that the optimum nitrogen application rate in this study might be the lowest values (160 kg ha-1 for sweet maize and 180 kg ha-1 for waxy maize).  The kernel number per ear of sweet maize had a potentially more significant impact on fresh grain yield compared to the 1,000-fresh kernel weight both under RLN and RHN.  In waxy maize, 1,000-kernel weight contributed more to fresh grain yield under RLN, and kernel number ear-1 and 1,000-kernel weight cooperatively affected yield under RHN.  In this study, it was observed that sweet maize required taller plant and ear height, along with an optimal ear-plant height ratio, to enhance dry matter accumulation and increase source size, particularly under RLN, to achieve a higher fresh grain yield.  In contrast, a lower ear height and ear-plant height ratio of waxy maize probably contributed more to increased kernel number and weight under RLN, likely due to a lower ear height can reduce the distance between sink and source, enabling more efficient photoassimilate allocation to the ear.
Keywords:  fresh maize       nitrogen application rates              yield              characteristics of nitrogen-efficient varieties  
Online: 26 April 2024  
Fund: This research was funded by the Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding, China (2021C02064-4) and the Zhejiang Province “Three Rural and Nine Party” Science and Technology Cooperation Plan Project (2023SNJF002).
About author:  Fei Bao, E-mail: baof@zaas.ac.cn; Ping Zhang, E-mail: zhangping@cau.edu.cn; #Correspondence Fucheng Zhao, Tel: +86-579-86012610, E-mail: zhaofc@zaas.ac.cn *These authors contributed equally to this study.

Cite this article: 

Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. 2024. Fresh maize yield in response to nitrogen application rates and characteristics of nitrogen-efficient varieties. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.085

Ahmad I, Batyrbek M, Ikram K, Ahmad S, Kamran M, Misbah, Khan R S, Hou F, Han Q. 2023. Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density. Journal of Integrative Agriculture22, 417–433.

Alijani K, Bahrani M J, Kazemeini S A, Yasrebi J. 2021. Soil and sweet corn quality responses to tillage, residue, and nitrogen management in southern Iran. International Journal of Plant Production15, 139–150.

Arisede C, Mainassara Z A, Jill C, Amsal T, Cosmos M, Bish D, Benhildah M, Mike O, Maruthi P B. 2020. Low-N stress tolerant maize hybrids have higher fertilizer N recovery efficiency and reduced N-dilution in the grain compared to susceptible hybrids under low N conditions. Plant Production Science23, 417–426.

Beed F D, Paveley N D, Sylvester-Bradley R. 2007. Predictability of wheat growth and yield in light-limited conditions. The Journal of Agricultural Science145, 63–79.

Chen F. 2001. Screening for nitrogen-efficient maize genotypes and heterosis analysis. Ph D thesis, China Agricultural University, China. (in Chinese)

Chen F, Fang Z, Gao Q, Ye Y, Jia L, Yuan L, Mi G, Zhang F. 2013. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Science China Life Sciences56, 552–560.

Chen G, Cao H, Chen D, Zhang L, Zhao W, Zhang Y, Ma W, Jiang R, Zhang H, Zhang F. 2019. Developing sustainable summer maize production for smallholder farmers in the North China Plain: An agronomic diagnosis method. Journal of Integrative Agriculture18, 1667–1679.

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, Wang Z, Zhang W, Yan X, Yang J, Deng X, Gao Q, Zhang Q, Guo S, Ren J, Li S, Ye Y, Wang Z, Huang J, Tang Q, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chivenge P, Saito K, Bunquin M A, Sharma S, Dobermann A. 2021. Co-benefits of nutrient management tailored to smallholder agriculture. Global Food Security30, 100570.

Ciampitti I A, Vyn T J. 2012. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research133, 48–67.

Deng X Q, Fan G G, Liu Z X. 2019. Application of NPK combined application to agronomic traits, yield and nutrient absorption and utilization of waxy maize influences. Tillage and Cultivation, 5, 13-18. (in Chinese)

Du X, Wang Z, Lei W, Kong L. 2021. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Scientific Reports11, 358.

Duvick D N. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). In: Advances in Agronomy. Elsevier Science & Technology, USA. pp. 83–145.

Gao L, Li Y L, Li W, Yu T, Li G K, Li C Y, Hu J G. 2017. Effects of nitrogen application on yields and nitrogen use efficiencies of sweet corn in south China. Journal of Plant Nutrition and Fertilizer, 23, 1215–1224. (in Chinese)

Gonzalez V H, Tollenaar M, Bowman A, Good B, Lee EA. 2018. Maize yield potential and density tolerance. Crop Science58, 472–485.

Gu B, Zhang X, Lam S K, Yu Y, van Grinsven H J M, Zhang S, Wang X, Bodirsky B L, Wang S, Duan J, Ren C, Bouwman L, de Vries W, Xu J, Mark A. Sutton M A, Chen  D. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature, 613, 77–84,

Huang G, Liu Y, Guo Y, Peng C, Tan W, Zhang M, Li Z, Zhou Y, Duan L. 2021. A novel plant growth regulator improves the grain yield of high-density maize crops by reducing stalk lodging and promoting a compact plant type. Field Crops Research260, 107982.

Illés Á, Szabó A, Mousavi S M N, Bojtor C, Vad A, Harsányi E, Sinka L. 2022. The influence of precision dripping irrigation system on the phenology and yield indices of sweet maize hybrids. Water14, 2480.

Kamran M, Ahmad I, Wang H, Wu X, Xu J, Liu T, Ding R, Han Q. 2018. Mepiquat chloride application increases lodging resistance of maize by enhancing stem physical strength and lignin biosynthesis. Field Crops Research224, 148–159.

Kong L, Xie Y, Hu L, Si J, Wang Z. 2017. Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports7, 43363.

Ladha J K, Pathak H J, Krupnik T, Six J, van Kessel C. 2005. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. In: Advances in Agronomy. Elsevier Science & Technology, USA . pp. 85–156.

Li G, Wang L, Li L, Lu D, Lu W. 2020. Effects of fertilizer management strategies on maize yield and nitrogen use efficiencies under different densities. Agronomy Journal112, 368–381.

Li J, Zhang H, Li B X. 2021. Current situation and development countermeasures of fresh maize cultivation in Zhejiang. Journal of Zhejiang Agricultural Sciences62, 1679-1681. (in Chinese)

Li Q, Kong F, Wu Y, Feng D, Yuan J C. 2020. Increasing nitrogen accumulation and reducing nitrogen loss with N-efficient maize cultivars. Plant Production Science23, 260–269.

Li W, Ma L F, Cao X M, Yu F F, Yao Z Y, Liu G H, Lv A Z. 2021. Effect of nitrogen fertilizer on yield of waxy corn under different planting density in Bashang area of northwest Hebei Province. Feed Research, 44, 109-112. (in Chinese)

Li W, Tan Z, Li R, Yuan J, Yan S, Li C. 2020. Starch accumulation, size distribution and related enzyme activity in superior and inferior kernels of maize under different nitrogen rates. Pakistan Journal of Botany53, 105-111.

Liang Y, Zhang Y, Liang Z, Zhang Q, Lan Z, Xu P, Li S, Yao L, Chen J. 2009. Guiding opinions on scientific fertilization in spring of Guangdong Province in 2009. Guangdong Agricultural Sciences, 4, 110-112. (in Chinese)

Liu Z, Gao J, Zhao S, Sha Y, Huang Y, Hao Z, Ke L, Chen F, Yuan L, Mi G. 2023. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crops Research291, 108806.

Liu Z, Hu C, Wang Y, Sha Y, Hao Z, Chen F, Yuan L, Mi G. 2021. Nitrogen allocation and remobilization contributing to low-nitrogen tolerance in stay-green maize. Field Crops Research263, 108078.

Liu Z, Sha Y, Huang Y, Hao Z, Guo W, Ke L, Chen F, Yuan L, Mi G. 2022. Efficient nitrogen allocation and reallocation into the ear in relation to the superior vascular system in low-nitrogen tolerant maize hybrid. Field Crops Research284, 108580.

Lu C Q, Tian H Q. 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth System Science Data9, 181–192.

Ma D, Li S, Zhai L, Yu X, Xie R, Gao J. 2020. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s. Field Crops Research250, 107766.

Mi G, Chen F, Yuan L, Zhang F. 2016. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. In: Advances in Agronomy, Elsevier, USA. pp. 73–97.

Mi G, Li J, Chen F, Zhang F, Cui Z, Liu X. 2003. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. Journal of Plant Nutrition, 26 , 237-247.

Ning P, Li S, Li X, Li C. 2014. New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Research166, 66–71.

Pei Y, Chen X, Niu Z, Su X, Wang Y, Wang X. 2023. Effects of nitrogen fertilizer substitution by cow manure on yield, net GHG emissions, carbon and nitrogen footprints in sweet maize farmland in the Pearl River Delta in China. Journal of Cleaner Production399, 136676.

Raza S, Miao N, Wang P, Ju X, Chen Z, Zhou J, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Global Change Biology26, 3738–3751.

Wang G Y, Zhao F C, Tan H P, Bao F, Han H L, Su T. 2015. Current status and main cropping patterns of the fresh maize industry in Zhejiang Province. Journal of Zhejiang Agricultural Sciences, 56, 1553-1556. (in Chinese)

Wei J G, Chai Q, Yin W, Fan H, Guo Y, Hu F L, Fan Z L, Wang Q M. 2024. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions. Journal of Integrative Agriculture23, 122–140.

Wei S, Wang X, Li G, Qin Y, Jiang D, Dong S. 2019. Plant density and nitrogen supply affect the grain-filling parameters of maize kernels located in different ear positions. Frontiers in Plant Science10, 180.

Wu Y W, Zhao B, Li X L, Liu Q L, Feng D J, Lan T Q, Kong F L, Li Q, Yuan J C. 2022. Nitrogen application affects maize grain filling by regulating grain water relations. Journal of Integrative Agriculture21, 977–994.

Xia L, Yan X. 2023. How to feed the world while reducing nitrogen pollution. Nature613, 34–35.

Xu C, Gao Y, Tian B, Ren J, Meng Q, Wang P. 2017. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities. Field Crops Research200, 71–79.

Yang J, Zhang J. 2005. Grain filling of cereals under soil drying. New Phytologist169, 223–236.

Yu W, Yue Y, Wang F. 2022. The spatial-temporal coupling pattern of grain yield and fertilization in the North China Plain. Agricultural Systems196, 103330.

Yue K, Li L, Xie J, Liu Y, Xie J, Anwar S, Fudjoe S K. 2022. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Frontiers in Plant Science, 12, 798119.

Zhang W, Cao G, Li X, Zhang H, Wang C, Liu Q, Chen X, Cui Z, Shen J, Jiang R, Mi G, Miao Y, Zhang F, Dou Z. 2016. Closing yield gaps in China by empowering smallholder farmers. Nature537, 671–674.

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature, 528, 51–59. 

Zhao B, Niu X, Ata-Ul-Karim ST, Wang L, Duan A, Liu Z, Lemaire G. 2020. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. European Journal of Agronomy113, 125967.

Zhao Y, Lv Y, Zhang S, Ning F, Cao Y, Liao S, Wang P, Huang S. 2021. Shortening internodes near ear: An alternative to raise maize yield. Journal of Plant Growth Regulation41, 628–638.

Zhao Y, Zhang S, Lv Y, Ning F, Cao Y, Liao S, Wang P, Huang S. 2022. Optimizing ear-plant height ratio to improve kernel number and lodging resistance in maize (Zea mays L.). Field Crops Research276, 108376.

Zhu Y H, Yang J F, Liu Y Q, Guo G F, Ding M W, Jia L L. 2021. Optimal nitrogen fertilizer application rate and its effects on yield and nutrient utilization efficiency of fresh maize in piedmont plain of Hebei Province. Journal of Hebei Agricultural Sciences, 25, 60-64. (in Chinese)

[1] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[2] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[3] Jie Cheng, Xiukai Cao, Shengxuan Wang, Jiaqiang Zhang, Binglin Yue, Xiaoyan Zhang, Yongzhen Huang, Xianyong Lan, Gang Ren, Hong Chen. 3D genome organization and its study in livestock breeding[J]. >Journal of Integrative Agriculture, 2024, 23(1): 39-58.
[4] Xiaotong Guo, Xiangju Li, Zheng Li, Licun Peng, Jingchao Chen, Haiyan Yu, Hailan Cui. Effect of mutations on acetohydroxyacid synthase (AHAS) function in Cyperus difformis L.[J]. >Journal of Integrative Agriculture, 2024, 23(1): 177-186.
[5] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

[6] Yanan Xu, Yue Wu, Yan Han, Jiqing Song, Wenying Zhang, Wei Han, Binhui Liu, Wenbo Bai. Effect of chemical regulators on the recovery of leaf physiology, dry matter accumulation and translocation, and yield-related characteristics in winter wheat following dry-hot wind[J]. >Journal of Integrative Agriculture, 2024, 23(1): 108-121.
[7] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[8] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[9] Jingui Wei, Qiang Chai, Wen Yin, Hong Fan, Yao Guo, Falong Hu, Zhilong Fan, Qiming Wang. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions[J]. >Journal of Integrative Agriculture, 2024, 23(1): 122-140.
[10] Wan Wang, Zhenjiang Zhang, Weldu Tesfagaber, Jiwen Zhang, Fang Li, Encheng Sun, Lijie Tang, Zhigao Bu, Yuanmao Zhu, Dongming Zhao. Establishment of an indirect immunofluorescence assay for the detection of African swine fever virus antibodies[J]. >Journal of Integrative Agriculture, 2024, 23(1): 228-238.
[11] Yanfei Song, Tai’an Tian, Yichai Chen, Keshi Zhang, Maofa Yang, Jianfeng Liu. A mite parasitoid, Pyemotes zhonghuajia, negatively impacts the fitness traits and immune response of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2024, 23(1): 205-216.
[12] Qi Zhang, Wenqin Zhan, Chao Li, Ling Chang, Yi Dong, Jiang Zhang.

Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants [J]. >Journal of Integrative Agriculture, 2024, 23(1): 187-194.

[13] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[14] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

[15] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
No Suggested Reading articles found!