Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1688-1703    DOI: 10.1016/j.jia.2024.01.016
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits

Liang Wang1, Nijiang Ai2, Zechang Zhang1, Chenhui Zhou1, Guoli Feng2, Sheng Cai1, Ningshan Wang2, Liuchun Feng1, Yu Chen1, Min Xu1, Yingying Wang1, Haoran Yue1, Mengfei Chen1, Liangshuai Xing1, Baoliang Zhou1#

1 Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Collaborative Innovation Center for Modern Crop Production Co-sponsored by Jiangsu Province and Ministry of Education/Cotton Germplasm Enhancement and Application Engineering Research Center, Ministry of Education, Nanjing 210095, China

2 Xinjiang Production and Construction Corps, Shihezi Agricultural Science Research Institute, Shihezi 832000, China

 Highlights 
● A new Gossypium hirsutum–Gossypium raimondii introgression population was developed with an introgression rate of 52.33% (386.98 Mb) for the G. raimondii genome.  
● Fifty-nine common QTLs, including 14 stable QTLs and six common QTL (co-QTL) clusters, and one hotspot of micronaire (MIC), were identified.  
● The introgression lines developed could be useful for molecular marker-assisted breeding and mapping QTLs precisely for mining desirable genes from the wild species G. raimondii.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  雷蒙德氏棉(2n=2x=26,D5)是二倍体野生种,被认为是广为栽培的陆地棉(2n=4x=52, AD1) D染色体亚组的祖先供体种,目前尚未得到有效利用。本研究我们培育了一套陆地棉(受体)-雷蒙德氏棉(供体)渐渗系群体,开展了野生棉优异QTL/基因的挖掘与定位。该群体由256个渐渗系组成,来自供体雷蒙德氏棉基因组的覆盖率52.33%。渐渗片段长度范围为0.03- 19.12 Mb,平均为1.22 Mb,总渐渗片段覆盖长度386.98 Mb。采用全基因组关联分析(Q+K+MLM)和QTL定位(RSTEP-LRT)两种方法,鉴定出59个共同QTL,包括14个稳定QTL和6个共同QTL (co-QTL)簇,以及1个MIC热点。籽指(百粒重)的共同QTL均表现为正加性效应,而单铃重的共同QTL均表现为负加性效应,表明籽指与铃重之间的联系可能被打破。衣分的QTL表现出正效应,有利于提高棉花皮棉产量。大部分与纤维品质有关的QTL具有负加性效应,表明这些QTL在棉花育种中已得以驯化或改良。部分棉纤维品质QTL表现为正加性效应,可能是新的优异QTL,可用于改良棉纤维品质。这些渐渗系的育成将不但有助于分子标记辅助育种,也可通过精细定位QTL,进一步挖掘野生种雷蒙德氏棉的优异基因,为将来设计育种创制棉花新品种提供新基因资源。

Abstract  

Gossypium raimondii (2n=2x=26, D5), an untapped wild species, is the putative progenitor of the D-subgenome of Ghirsutum (2n=4x=52, AD1), an extensively cultivated species.  Here, we developed a Ghirsutum (recipient)–Graimondii (donor) introgression population to exploit the favorable QTLs/genes and mapped potential quantitative trait loci (QTLs) from wild cotton species.  The introgression population consisted of 256 lines with an introgression rate of 52.33% for the Graimondii genome.  The introgression segment length range was 0.03–19.12 Mb, with an average of 1.22 Mb.  The coverage of total introgression fragments from Graimondii was 386.98 Mb.  Further genome-wide association analysis (Q+K+MLM) and QTL mapping (RSTEP-LRT) identified 59 common QTLs, including 14 stable QTLs and six common QTL (co-QTL) clusters, and one hotspot of micronaire (MIC).  The common QTLs for seed index all showed positive additive effects, while the common QTLs for boll weight all had negative additive effects, indicating that the linkage between seed index and boll weight could be broken.  QTLs for lint percentage showed positive effects and could be beneficial for improving cotton yield.  Most QTLs for fiber quality had negative additive effects, implying these QTLs were domesticated/improved in Ghirsutum.  A few fiber quality QTLs showed positive additive effects, so they could be used to improve cotton fiber quality.  The introgression lines developed could be useful for molecular marker-assisted breeding and mapping QTLs precisely for mining desirable genes from the wild species Graimondii.  Such genes can improve cultivated cotton in the future through a design-breeding approach. 

Keywords:  Gossypium hirsutum        Gossypium raimondii        introgression lines        yield        fiber quality        quantitative trait locus  
Received: 24 August 2023   Online: 24 January 2024   Accepted: 12 December 2023
Fund: 
This study was funded by the National Key Research and Development Program of China (2016YFD0100203 and 2016YFD0102000), the Key Scientific and Technological Projects of the Eighth Division of the Xinjiang Production and Construction Corps (XPCC), China (2024NY01, 2023NY09, 2023NY10), the Key Scientific and Technological Project of XPCC, China (2021AB010), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX22_0748), and the Collaborative Innovation Center for Modern Crop Production co-sponsored by the Jiangsu Province and Ministry of Education, China.
About author:  Liang Wang, E-mail: 2020201084@stu.njau.edu.cn; #Correspondence Baoliang Zhou, Tel: +86-25-84396523, Fax: +86-25-84395307, E-mail: baoliangzhou@njau.edu.cn

Cite this article: 

Liang Wang, Nijiang Ai, Zechang Zhang, Chenhui Zhou, Guoli Feng, Sheng Cai, Ningshan Wang, Liuchun Feng, Yu Chen, Min Xu, Yingying Wang, Haoran Yue, Mengfei Chen, Liangshuai Xing, Baoliang Zhou. 2025. Development of Gossypium hirsutumGossypium raimondii introgression lines and their use in QTL mapping of agricultural traits. Journal of Integrative Agriculture, 24(5): 1688-1703.

Abdurakhmonov I Y, Kohel R J, Yu J Z, Pepper A E, Abdullaev A A, Kushanov F N, Salakhutdinov I B, Burie Z T, Saha S, Scheffler B E, Jenkins J N, Abdukarimov A. 2008. Molecular diversity and association mapping of fiber quality traits in exotic Ghirsutum L. germplasm. Genomics92, 478–487.

Abdurakhmonov I Y, Sah S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. 2009. Linkage disequilibrium based association mapping of fiber quality traits in Ghirsutum L. variety germplasm. Genetica136, 401–417.

Badri J, Lakshmidev G, JaiVidhya L R K, Prasad M S, Laha G S, Lakshmi V J, Isetty S R, Padmashree R, Balakrishna D, Varanasi Y V P, Jukanti A K, Singh U M, Singh V K, Kumar A, Ram T, Rao L V S, Sundara R M. 2022. Multiparent-derived, marker-assisted introgression lines of the elite Indian rice cultivar, ‘Krishna Hamsa’ show rresistance against bacterial blight and blast and tolerance to drought. Plants-Basel11, 622.

Barmukh R, Roorkiwal M, Dixit G P, Bajaj P, Kholova J, Smith M R, Chitikinen A, Bharadwaj C, Sreeman S M, Rathore A, Tripathi S, Yasin M, Vijayakumar A G, Sagurthi S R, Siddique K H M, Varshne R K. 2022. Characterization of ‘QTL-hotspot’ introgression lines reveals physiological mechanisms and candidate genes associated with drought adaptation in chickpea. Journal of Experimental Botany73, 7255–7272.

Bolger A, Scossa F, Bolger M E, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sørensen I, Lichtenstein G, Fich E A, Conte M, Keller H, Schneeberger K, Schwacke R, Ofner I, Vrebalov J, Xu Y, Osorio S, Aflitos S A, et al. 2014. The genome of the stress-tolerant wild tomato species Solanum pennelliiNature Genetics46, 1034–1038.

Brar D S, Khush G S. 1997. Alien introgression in rice. Plant Molecular Biology35, 35–47.

Brubaker C L, Paterson A H, Wendel J F. 1999. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome42, 184–203.

Calafiore R, Aliberti A, Ruggieri V, Olivieri F, Rigano M M, Barone A. 2019. Phenotypic and molecular selection of a superior Solanum pennellii introgression sub-line suitable for improving quality traits of cultivated tomatoes. Frontiers in Plant Science10, 190.

Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen Z J, Scheffler B E, Dennis E, Triplett B A, Zhang T, Guo W, Che X, Stell D M, Rabinowic P D, Town C D, Arioli T, Brubaker C, Cantrell R G, Lacape J M, Ulloa M, Chee P, Gingle A R, Haigler C H, Percy R, Saha S, et al. 2007. Toward sequencing cotton (Gossypium) genomes. Plant Physiology145, 1303–1310.

Chen Z J, Sreedasyam A, Ando A, Song Q, De Santiago L M, Hulse-Kemp A M, Ding M, Ye W, Kirkbride R C, Jenkins J, Plott C, Lovell J, Lin Y M, Vaughn R, Liu B, Simpson S, Scheffler B E, Wen L, Saski C A, Grover C E, et al. 2020. Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nature Genetics52, 525–533.

Cullingham C I, Miller J M, Peery R M, Dupuis J R, Malenfant R M, Gorrell J C, Janes J K. 2020. Confidently identifying the correct K value using the ΔK method: When does K=2? Molecular Ecology29, 862–869.

Dixit S, Singh U M, Singh A K, Alam S, Venkateshwarlu C, Nachimuthu V V, Yadav S, Abbai R, Selvaraj R, Devi M N, Ramayya P J, Badri J, Ram T, Lakshmi J, Lakshmidevi G, Lrk J V, Padmakumari A P, Laha G S, Prasad M S, Seetalam M, et al. 2020. Marker assisted forward breeding to combine multiple biotic-abiotic stress resistance/tolerance in rice. Rice13, 15.

Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, et al. 2018. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics50, 796–802.

Eshed Y, Abu-Abied M, Saranga Y, Zamir D. 1992. Lycopersicon esculentum lines containing small overlapping introgressions from L. pennelliiTheoretical and Applied Genetics83, 1027–1034.

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology14, 2611–2620.

Fang L, Gong H, Hu Y, Liu C, Zhou B, Huang T, Wang Y, Chen S, Fang D D, Du X, Chen H, Chen J, Wang S, Wang Q, Wan Q, Liu B, Pan M, Chang L, Wu H, Mei G, et al. 2017a. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biological18, 33.

Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, et al. 2017b. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nature Genetics49, 1089–1098.

Feng L, Chen Y, Xu M, Yang Y, Yue H, Su Q, Zhou C, Feng G, Ai N, Wang N, Zhou, B. 2021. Genome-wide introgression and quantitative trait locus mapping reveals the potential of Asian cotton (Gossypium arboreum) in improving upland cotton (Gossypium hirsutum). Frontiers in Plant Science12, 719371.

Feng Y, Yuan X, Wan Y, Yang Y, Zhang M, Yu H, Xu Q, Wang S, Niu X, Wei X. 2021. Validation of a QTL for grain size and weight using an introgression lline from a cross between Oryza sativa and Oryza minutaRice14, 43.

Gaikwad K B, Sing N, Bhatia D, Kaur R, Bains N S, Bharaj T S, Singh K. 2014. Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L. PLoS ONE9, e96939.

Grover C E, Arick M A, Thrash A, Conover J L, Sanders W S, Peterson D G, Frelichowski J E, Scheffler J A, Scheffler B E, Wendel J F. 2019. Insights into the evolution of the New World diploid cottons (Gossypium, Subgenus Houzingenia) based on genome sequencing. Genome Biology and Evolution11, 53–71.

Hirabayashi H, Sasaki K, Kambe T, Gannaban R B, Miras M A, Mendioro M S, Simon E V, Lumanglas P D, Fujita D, Takemoto-Kuno Y, Takeuchi Y, Kaji R, Kondo M, Kobayashi N, Ogawa T, Ando I, Jagadish K S V, Ishimaru T. 2014. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, OsativaJournal of Experimental Botany66, 1227–1236.

Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y L, Rahman M U, Han J, Wang K, Wang Q, Wu H, Mei G, et al. 2019. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics51, 739–748.

Huang G, Huang J Q, Chen X Y, Zhu Y X. 2021. Recent advances and future perspectives in cotton research. Annual Review of Plant Biology72, 437–462.

Huang G, Wu Z, Percy R G, Bai M, Li Y, Frelichowski J E, Hu J, Wang K, Yu J Z, Zhu Y. 2020. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics52, 516–524.

Ijaz B, Zhao N, Kong J, Hua J. 2019. Fiber quality iimprovement in upland cotton (Gossypium hirsutum L.): Quantitative trait loci mapping and marker assisted selection application. Frontiers in Plant Science10, 1585.

Jiang C, Wrigh R J, El-ZikK M, Paterso A H. 1998. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proceedings of the National Academy of Sciences of the United States of America95, 4419–4424.

Keerio A A, Shen C, Nie Y, Ahmed M M, Zhang X, Lin Z. 2018. QTL mapping for fiber quality and yield traits ased on introgression lines derived from Gossypium hirsutum × G tomentosumInternational Journal of Molecular Sciences19, 243.

Kubond B A, St Clair D A. 2023. Bin mapping of water stress tolerance-related, fruit quality, and horticultural traits in tomato introgression lines derived from wild Solanum habrochaites. Crop Science63, 568–584.

Kumar P, Nimba S, Budhlakoti N, Singh V, Sangwa R S. 2022. Genetic diversity and population structure analysis for morphological traits in upland cotton (Gossypium hirsutum L.). Journal of Applied Genetics63, 87–101.

Lee S B, Kaittanis C, Jansen R K, Hostetle J B, Tallon L J, Tow C D, Daniell H. 2006. The complete chloroplast genome sequence of Gossypium hirsutum: Organization and phylogenetic relationships to other angiosperms. BMC Genomics7, 61.

Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huan G, Percy R G, Liu K, Yan W, Chen W, Du X, Shi C, Yuan Y, Ye W, et al. 2015. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology33, 524–530.

Li H H, Ye G Y, Wang J K. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics175, 361–374.

Li J, Yua D, Wang P, Wang Q, Sun M, Liu Z, Si H, Xu Z, Ma Y, Zhang B, Pei L, Tu L, Zhu L, Chen L L, Lindsey K, Zhang X, Jin S, Wang M. 2021. Cotton pan-genome retrieves the lost sequences and genes during domestication and selection. Genome Biology22, 119.

Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, et al. 2018. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nature Genetics50, 803–813.

Ma Z, Zhang Y, Wu L, Zhang G, Sun Z, Li Z, Jiang Y, Ke H, Chen B, Liu Z, Gu Q, Wang Z, Wang G, Yang J, Wu J, Yan Y, Meng C, Li L, Li X, Mo S, et al. 2021. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics53, 1385–1391.

Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H. 1997. Report on QTL nomenclature. Rice Genetics Newsletter14, 11–13.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePrist M A. 2010. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research20, 1297–1303.

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal3, 269–283.

Mir Z A, Chandra T, Saharan A, Budhlakoti N, Mishra D C, Saharan M S, Mir R R, Singh A K, Sharma S, Vikas V K, Kuma S. 2023. Recent advances on genome-wide association studies (GWAS) and genomic selection (GS); prospects for Fusarium head blight research in Durum wheat. Molecular Biology Reports50, 3885–3901.

Muellner A E, Buerstmayr M, Eshonkulov B, Hole D, Michel S, Hagenguth J F, Pachler B, Pernold R, Buerstmayr H. 2021. Comparative mapping and validation of multiple disease resistance QTL for simultaneously controlling common and dwarf bunt in bread wheat. Theoretical and Applied Genetics134, 489–503.

Naz A A, Arifuzzaman M, Muzammil S, Pillen K, Léo J. 2014. Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genomic15, 107.

Nzuki I, Katari M S, Bredeson J V, Masumba E, Kapinga F, Salum K, Mkamilo G S, Shah T, Lyons J B, Rokhsar D S, Rounsley S, Myburg A A, Ferguson M E. 2017. QTL mapping for pest and disease resistance in Cassava and coincidence of Some QTL with introgression regions derived from Manihot glazioviiFrontiers in Plant Science8, 1168.

Pan W, Han X, Huang S, Yu J, Zhao Y, Qu K, Zhang Z, Yin Z, Qi H, Yu G, Zhang Y, Xin D, Zhu R, Liu C, Wu X, Jiang H, Hu Z, Zuo Y, Chen Q, Qi Z. 2022. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses. Journal of Integrative Agriculture21, 1886–1902.

Paterson A H, Brubaker C, Wendel J. 1993. A rapid method for extraction of cotton (Gossypium Spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Molecular Biology Reporter11, 122–127.

Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature492, 423–427.

Perkin L C, Bell A, Hinze L L, Suh C P C, Arick M A, Peterson D G, Udall J A. 2021. Genome assembly of two nematode-resistant cotton lines (Gossypium hirsutum L.). G3-Genes Genomes Genetics11, 6.

Rabieyan E, Bihamta M R, Moghaddam M E, Mohammadi V, Alipour H. 2022. Genome-wide association mapping for wheat morphometric seed traits in Iranian landraces and cultivars under rain-fed and well-watered conditions. Scientific Reports12, 17839.

Ruan Y L. 2013. Boosting seed development as a new strategy to increase cotton fiber yield and quality. Journal of Integrative Plant Biology55, 572–575.

Said J I, Lin Z, Zhang X, Song M, Zhang J. 2013. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics14, 776.

Said J I, Song M, Wang H, Lin Z, Zhang X, Fang D D, Zhang J. 2015. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific Ghirsutum × Gbarbadense populations. Molecular Genetics and Genomics290, 1003–1025.

Sanchez P L, Wing R A, Brar D S. 2013. The wild relative of rice: Genomes and genomics. In: Zhang Q, Wing R, eds., Genetics and Genomics of Rice in Plant Genetics and GenomicsCrops and Models. Springe, New York, NY. pp. 9–25.

Sato K, Takeda K. 2009. An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theoretical and Applied Genetics119, 613–619.

Senchina D S, Alvarez I, Cronn R C, Liu B, Rong J, Noyes R D, Paterson A H, Wing R A, Wilkins T A, Wendel J F. 2003. Rate variation among nuclear genes and the age of polyploidy in GossypiumMolecular Biology and Evolution20, 633–643.

Shao Y, Shen Y, He F, Li Z. 2022. QTL identification for stem fiber, strength and rot resistance in a DH population from an alien introgression of Brassica napusPlants-Basel11, 373.

Sharma S, Jaba J, Rao P J, Prasad S, Gopal N, Sharma H C, Kilian B. 2022. Reaping the potential of wild Cajanus species through pre-breeding for improving resistance to pod borer, Helicoverpa armigera, in cultivated pigeonpea (Cajanus cajan (L.) Millsp.). Biology-Basel11, 485.

Sharma S, Paul P J, Kumar C V S, Rao P J, Prashanti L, Muniswamy S, Sharma M. 2019. Evaluation and identification of promising introgression lines derived from wild Cajanus species for broadening the genetic base of cultivated pigeonpea [Cajanus cajan (L.) Millsp.]. Frontiers in Plant Science10, 1269.

Si Z, Chen H, Zhu X, Cao Z, Zhang T. 2017. Genetic dissection of lint yield and fiber quality traits of Ghirsutum in Gbarbadense background. Molecular Breeding37, 9.

Stelly D M, Saha S, Raska D A, Jenkins J N, McCarty J C, Gutierrez O A. 2005. Registration of 17 upland (Gossypium hirsutum) cotton germplasm lines disomic for different Gbarbadense chromosome or arm substitutions. Crop Science45, 2663–2665.

Su J, Pang C, Wei H, Li L, Liang B, Wang C, Song M, Wang H, Zhao S, Jia X, Mao G, Huang L, Geng D, Wang C, Fan S, Yu S. 2016. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. BMC Genomics17, 687.

Udall J A, Long E, Hanson C, Yuan D, Ramaraj T, Conover J L, Gong L, Arick M A, Grover C E, Peterson D G, Wendel J F. 2019. De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneriG3-Genes Genomes Genetics9, 3079–3085.

Uluisik S. 2021. Chemical and structural quality traits during postharvest ripening regulated by chromosome segments from a wild relative of tomato Solanum pennellii IL4-2 and IL5-1. Journal of Food Biochemistry45, e13858.

Van Schalkwyk A, Wenzl P, Smit S, Lopez-Cobollo R, Kilian A, Bishop G, Hefer C, Berger D K. 2012. Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum × Solanum pennellii introgression lines. Theoretical and Applied Genetics124, 947–956.

Wang C L, Ullo M, Mullen T R, Yu J Z, Roberts P A. 2012. QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents. PLoS ONE7, e34874.

Wang C L, Ulloa M, Robert P A. 2008. A transgressive segregation factor (RKN2) in Gossypium barbadense for nematode resistance clusters with gene rkn1 in GhirsutumMolecular Genetics and Genomics279, 41–52.

Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J. 2020. Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with Gbarbadense introgressions. Plant Biotechnolgy Journal18, 707–720.

Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. 2006. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genetics Research88, 93–104.

Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, et al. 2012. The draft genome of a diploid cotton Gossypium raimondiiNature Genetics44, 1098–1103.

Wang M, Li J, Qi Z, Long Y, Pei L, Huang X, Grover C E, Du X, Xia C, Wang P, Liu Z, You J, Tian X, Ma Y, Wang R, Chen X, He X, Fang D D, Sun Y, Tu L, et al. 2022. Genomic innovation and regulatory rewiring during evolution of the cotton genus GossypiumNature Genetics54, 1959–1971.

Wang M, Li J, Wang P, Liu F, Liu Z, Zhao G, Xu Z, Pei L, Grover C E, Wendel J F, Wang K, Zhang X. 2021. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Molecular Biology and Evolution38, 3621–3636.

Wang M, Tu L, Yuan D, Zhu D, Shen C, Li J, Liu F, Pei L, Wang P, Zhao G, Ye Z, Huang H, Yan F, Ma Y, Zhang L, Liu M, You J, Yang Y, Liu Z, Huang F, et al. 2019. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadenseNature Genetics51, 224–229.

Wei H L, Xue Y J, Chen P Y, Hao P B, Wei F, Sun L, Yang Y L. 2021. Genome-wide identification and functional investigation of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes in cotton. Plants-Basel10, 17.

Wendel J F. 1989. New world tetraploid cottons contain old world cytoplasm. Proceedings of the National Academy of Sciences of the United States of America86, 4132–4136.

Wendel J F, Brubaker C, Alvarez I, Cronn R, Stewart J M. 2009. Evolution and natural history of the cotton genus. In: Paterson A H, ed., Genetics and Genomics of Cotton in Plant Genetics and GenomicsCrops and Models. Springer, New York, NY. pp. 3–22.

Wendel J F, Cronn R C. 2003. Polyploidy and the evolutionary history of cotton. Advances in Agronomy78, 139–186.

Xi Z, He F, Zeng R, Zhang Z, Ding X, Li W, Zhang G. 2006. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome49, 476–484.

Xu Z, Chen J, Meng S, Xu P, Zhai C, Huang F, Guo Q, Zhao L, Quan Y, Shangguan Y, Meng Z, Wen T, Zhang Y, Zhang X, Zhao J, Xu J, Liu J, Gao J, Ni W, Chen X, et al. 2022. Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. Plant Communications3, 100350.

Xu Z, Yu J, Kohel R J, Percy R G, Beavis W D, Main D, Yu J Z. 2015. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome. Genomics106, 61–69.

Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F. 2019. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications10, 2989.

Yu J, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics38, 203–208.

Zhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X. 2015. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the Ganomalum and Ghirsutum genomes. Theoretical and Applied Genetics128, 1531–1540.

Zhai H C, Gong W K, Tan Y N, Liu A Y, Song W W, Li J W, Deng Z Y, Kong L L, Gong J W, Shang H H, Chen T T, Ge Q, Shi Y Z, Yuan Y L. 2016. Identification of chromosome segment substitution lines of Gossypium barbadense introgressed in Ghirsutum and quantitative trait locus mapping for fiber quality and yield traits. PLoS ONE11, e0159101.

Zhang B, Ma L, Wu B, Xing Y, Qiu X. 2022. Introgression lines: Valuable resources for functional genomics research and breeding in rice (Oryza sativa L.). Frontiers in Plant Science13, 863789.

Zhang J, Wu M, Yu J, Li X, Pei W. 2016. Breeding potential of introgression lines developed from interspecific crossing between upland ccotton (Gossypium hirsutum) and Gossypium barbadense: Heterosis, combining ability and genetic effects. PLoS ONE11, e0143646.

Zhang K, Kuraparthy V, Fang H, Zhu L, Sood S, Jones D C. 2019. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genomics20, 889.

Zhang S W, Feng L C, Xing L T, Yang B, Gao X, Zhu X F, Zhang T Z, Zhou B L. 2016. New QTLs for lint percentage and boll weight mined in introgression lines from two feral landraces into Gossypium hirsutum acc TM-1. Plant Breeding135, 90–101.

Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, et al. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc TM-1) provides a resource for fiber improvement. Nature Biotechnology33, 531–553.

Zhu D, Li X, Wang Z, You C, Nie X, Sun J, Zhang X, Zhang D, Lin Z. 2020. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genomics21, 431.

Zou J, Zhang Z, Kang Q, Yu S, Wang J, Chen L, Liu Y, Ma C, Zhu R, Zhu Y, Dong X, Jiang H, Wu X, Wang N, Hu Z, Qi Z, Liu C, Chen Q, Xin D, Wang J. 2022. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean. Journal of Integrative Agriculture21, 2197–2210.

[1] Jia Wu, Luqi Zhang, Ziyi Wang, Fan Ge, Hao Zhang, Jianchang Yang, Yajie Zhang. Reasonable dry cultivation methods can balance the yield and grain quality of rice[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1030-1043.
[2] Qingyun Tang, Guodong Wang, Lei Zhao, Zhiwen Song, Yuxiang Li.
Responses of yield, root traits and their plasticity to the nitrogen environment in nitrogen-efficient cultivars of drip-irrigated rice
[J]. >Journal of Integrative Agriculture, 2025, 24(2): 480-496.
[3] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[4] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[5] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[6] Yeison M QUEVEDO, Liz P MORENO, Eduardo BARRAGÁN. Predictive models of drought tolerance indices based on physiological, morphological and biochemical markers for the selection of cotton (Gossypium hirsutum L.) varieties[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1310-1320.
[7] ZHU Ling-xiao, LIU Lian-tao, SUN Hong-chun, ZHANG Yong-jiang, ZHANG Ke, BAI Zhi-ying, LI An-chang, DONG He-zhong, LI Cun-dong . Effects of chemical topping on cotton development, yield and quality in the Yellow River Valley of China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 78-90.
No Suggested Reading articles found!